
Process Director Documentation
Developer's Reference Guide

Last Updated: 10/13/2023, 8:51 AM



BP Logix Inc
Process Director Documentation

Contents

Contents 2

Documentation Formatting Note 6

Text and Code Formatting Conventions 6

Icons 7

Other Conventions 7

Development Overview 8

Script Types 8

.NET Forms 8

Customization through Scripting 8

Custom Scripting/Development 10

Installing the BP Logix Visual Studio Plugin 10

Form Scripts 12

Form Script Events # 13

Process Scripts 16

Process Script Handlers 17

Knowledge View Scripts 19

Custom ASPX Pages 20

Creating ASP.NET Forms 21

Adding a New Form Definition 21

Editing an ASP.NET Form # 24

Developing a Form in the .NET environment 25

Form Controls 26

Custom Workspace Portlets 57

Custom Tasks 59

What Custom Tasks Can Be Used For 59

Form Custom Tasks 60

Process Custom Tasks 60

How Custom Tasks Work 60

Creating a Custom Task 61

Web Service Custom Tasks 62

Classes 63

Common Termination Reasons 63

2 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

bp Class 63

Business Value Class 73

Case Class 76

ConditionSet Class 80

Condition Struct 81

ContentObject Class 82

DataSource Class 101

DocumentObject Class 103

Dropdown Object Class 106

DropdownValue Object Class 107

Excel Class 108

Folder Class 110

Form Class 112

FormControl Class 127

FormMessageString Class 134

Group Class 135

MetaCategory Class 139

Partition Class 141

PDF Class 143

Process Class 148

ProcessTask Class 156

ProcessTaskUser Class 161

Project (Process Timeline) Class 165

ProjectActivity Class 167

ProjectActivityUser Class 170

Report Class 171

Rule Class 172

SystemVariable Class 174

SystemVariableContext Class 175

Task Class 176

User Class 179

Workflow Class 192

WorkflowStep Class 197

WorkflowStepUser Class 199

Workspace Class 201

Developer's Reference Guide | 3



BP Logix Inc
Process Director Documentation

JavaScript APIs 202

Form Data # 202

iPopupSimple Command # 203

Language/Culture Localization 207

Customizing the Process Director UI 207

Form Customization/Localization 208

Customization File 212

Form Control Styles 216

Creating Your Own Custom Variables 216

Session Variables 217

Shared Delegation 218

Custom Variables 218

Active Directory Custom Variables 219

Administration Custom Variables 223

Auditing Custom Variables 235

Default Settings Custom Variables 238

LDAP Custom Variables 244

List Maximum Custom Variables 246

Logs Custom Variables 249

Miscellaneous Variables 253

ML and AI Custom Variables 260

Mobile Application Custom Variables 262

Password Enforcement Custom Variables 263

Process Administration Custom Variables 267

Reporting Tool Custom Variables 269

REST Custom Variables 271

SAML Custom Variables 272

Social Media Custom Variables 279

System Custom Variables 284

Task Custom Variables 289

User Info SlideOut Custom Variables 293

User Interface Custom Variables 295

User Custom Variables 321

Using Web Services 325

REST Services # 325

4 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Other REST Services 326

Web Service Authentication Settings # 326

Extending BP Logix Web Services # 327

Calling Other Web Services # 328

Available Web Services 328

wsAdmin 329

wsCase 333

wsContent 335

wsForm 341

wsGroup 345

wsReport 348

wsRule 349

wsTimeline 351

wsUser 355

wsUtil 360

wsWorkflow 363

REST Services 367

The REST Request # 368

The REST Response # 369

More Information about Rest Services 369

JSON and XML for REST 369

JSONPath and XPath 371

Index 375

Developer's Reference Guide | 5



BP Logix Inc
Process Director Documentation

Documentation Formatting Note

Text and Code Formatting Conventions
To highlight terms and concepts that have special relevance, this documentation implements several
formatting conventions to make key words and terms more noticeable.

l Control Label: This format will identify the text labels or properties for Process Director objects, or the
names of dialog boxes.
Example: The Name text box.

l UI Element: This format will identify user interface elements such as buttons, tabs, or other UI objects
used to perform interface operations.
Example: The Submit button.

l Formal Control Name: This format will identify named Process Director controls.
Example: A Section End control.

l Process Director Object: This format will identify named instances of Process Director Folders, Forms,
Process Timelines, Knowledge Views, etc.
Example: The Travel Expense Approval Process Timeline.

l Key Terms: This format will identify key terms and concepts introduced into the text of the document,
and which are important to learn.
Example: A Case is group of processes, transactions, or responses that define a complex activity.

l Code: This format will identify code samples, system variables, formulas, or other fixed programmatic
syntax.
Example: Type the following formula: AirFare + Lodging.

l Code Option: A section of a code sample to denote placeholder values that must be replaced by the
user manually at design time.
Example: {CURR_USER, format=FormatType}

l Code Comment: A section of a code sample that is used for text comments, rather than runnable code.
Example: // This is a comment.

l Code Variable: A programming object whose value is usually determined from a command written in
code.
Example: var formControls = BaseCurrentForm.FormControls;

In addition to the above, extended samples of program code are presented in a special format to set them
off from the rest of the text, as demonstrated below:

// Called after database initialized
public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Before we make SDK calls that access the database,
    // ensure DB has been opened
    if (bp.DBOpenComplete)

{
// Place custom code here

    }
}

6 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Important text or warnings are presented in a special callout box for special attention:

This is an Important item.

Notes of general interest are also presented in special callout boxes:

This is a note.

Hopefully, the use of these formatting conventions will make it easier for you to determine the various
types of objects to which the text refers.

Icons
Some universal icons are used in the documentation. They are listed below:

ICON NAME DESCRIPTION

Link A hyperlink to the specific URL and named anchor of a topic,
heading, or other item.

Dropdown Closed An icon that, when clicked, will expand dropdown text in a
topic.

Dropdown Open An icon that, when clicked, will close the expanded drop-
down text in a topic.

Finally, some topic headers within each online document may display a link symbol (#) when you mouse
over the header. Clicking the link will navigate to that specific section of the document, which can then
be bookmarked in your browser.

Other Conventions
URLs displayed in sample will, unless used for commands or URLs used on the local host machine, use the
"HTTPS" prefix by default, as modern practice has evolved to use the encryption layer to access URLs,
instead of the plain-text method (HTTP) of accessing URLs.

Developer's Reference Guide | 7



BP Logix Inc
Process Director Documentation

Development Overview

This document describes the code-based customization that is available for Process Director, with the
appropriate SDK license. This guide is intended for companies that require customization of process or
form processing, or that require integration into other applications.

Script Types
Process Director enables you to create Knowledge View, Form, and Process Timeline script types. All
script files are stored as ASCX files in Process Director. They can be placed anywhere in the Content List
and are referenced (pointed to) by the object definitions that call them.

.NET Forms
The .NET Form enables you to develop forms completely inside the Visual Studio environment to enable
the full functionality that .NET offers.

Customization through Scripting
Process Director provides customization options and APIs that allow the product to provide specialized
business logic needed by your organization. The programming API enables you to customize the various
functions and interfaces of Process Director; it also enables the product to interface with external systems
via API calls made through scripting. There are three main areas where custom scripts are implemented:
Form processing, Timeline processing, and configuring user options. This customization isn't required, but
is important when you want to perform specific business logic for your requirements. The customization is
provided by allowing you to create and write custom .NET controls and functions. These custom functions
can get and/or modify data within Process Director or external applications.

To develop Scripts inside Visual Studio, use the fully functional Visual Studio project installed with the
product named bpVS.zip. This project includes the DLL’s necessary to use Intellisense and compile-time
error checking.

Additionally, you can run Process Director inside Visual Studio. This will enable setting of breakpoints in
custom scripts, inspection of objects, viewing logs in the Visual Studio output window, and other debug-
ging techniques. To accomplish this, license and install Process Director on a test/development work-
station or server. Then launch Visual Studio, select File->Open Web Site, and select the website folder
where Process Director is installed (typically C:\Program Files\BP Logix\Process Director\website). If
prompted, don't upgrade to .NET 4. Select Debug-Start Debugging. If prompted, allow Visual Studio to
modify web.config to enable debugging.

If you are running Process Director on a development server, you can also edit the web.config manually to
enable debugging, by adding the attribute debug="true" in the <compilation> section, as shown below.
This is NOT a recommended practice for any production system!

<configuration>
    <system.web>
        <compilation debug="true" targetFramework="X.X"/>

8 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

    </system.web>
</configuration>

If you manually edit the web.config file, you should be aware that Process Director will over-
write the web.config file on every full or patch installation of Process Director.

To set breakpoints, open the relevant forms or scripts from the FormCache or WfScriptCache folder. Once
opened, breakpoints can be set, and variables can subsequently be inspected or modified. Notice that the
scripts and forms are overwritten in the cache folders if they are changed. You may need to right-click
Refresh the cache folders in Visual Studio to see new files appear.

Developer's Reference Guide | 9



BP Logix Inc
Process Director Documentation

Custom Scripting/Development

Process Director offers a number of methods for creating custom scripts. Script handlers with the appro-
priate stubs for scripting events are provided for .NET developers in the Visual Studio IDE, or created auto-
matically in the Process Director interface. The term Custom Script can mean a wide variety of things in
Process Director. Indeed, a better term might be "Custom Development" since "scripting" can range from
a small script to change the background colors of a Knowledge View row, to building an fully functional
Process Director application in ASP.NET—though the latter would be an exceptionally rare use case.

This section of the documentation covers the various scripting/development use cases, and provides
instructions for implementing several custom development scenarios. You can navigate to each of the
topics in the section via the Table of Contents displayed on the upper right corner of the page, or by using
the links below.

Installing the BP Logix Visual Studio Plugin: Instructions for setting up Visual Studio with the BP Logix
Plugin.

Form Scripts: Creating custom scripts that run for Form instances.

Process Scripts: Creating custom scripts that run for Process Timeline instances.

Knowledge View Scripts: Creating custom scripts that run for Knowledge Views.

Custom ASPX Pages: Creating ASPX pages to run custom scripts, such as for implementing custom busi-
ness logic, independent of other Process Director objects.

Creating ASP.NET Forms: Creating custom ASCX Forms for use when developing in the Visual Studio envir-
onment.

Custom Portlets: Creating custom Workspace portlets to display in the product UI.

Custom Tasks: Creating your own Custom Tasks for use in your applications.

SDK Classes: Reference documentation for the Properties, Methods and Events of all .NET classes con-
tained in the Process Director SDK.

Installing the BP Logix Visual Studio Plugin
The BP Logix Visual Studio Plug-in integrates with Microsoft Visual Studio. It provides the ability to drag
and drop Process Director Controls onto your forms. The easiest way to take advantage of the BP Logix
Visual Studio Plug-in, use the fully functional Visual Studio project installed with the product named
bpVS.zip. This project already has the plug-in installed and Intellisense enabled.

The following is a list of the features that are available to you in the plug-in.

Drag and Drop Control Editing. The plug-in adds an extension to the Visual Studio Toolbox giving you a
list of all controls that are available to you in the Process Director library.

l Control Properties.  Properties can now be set in the Properties box of the selected control.
l Intellisense.  All controls support full Intellisense to make the parameters easier to configure while in
the Source View.

l Compile. Visual Studio will highlight compile errors.

10 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

To enable this plug-in click on the menu item at the top named View > Toolbox. Once the toolbox is open
right click in an open area and select “Add Tab”. Name the tab “Process Director”.  Ensure the new tab is
selected and right-click on the tab and select Choose Items from the list.

A dialog box will display, select the Browse button under the .Net Framework Components tab. The
browse dialog box will appear. If you have Process Director installed, you'll find the DLL at “C:\Program
Files\BP Logix\Process Director\”. If you only have the plugin installed, you can find the DLL at “C:\Pro-
gram Files\BP Logix\Plugin\bpVS\Bin”. Once you've navigated to that folder, select “BPLo-
gix.bpVSPlugin.dll”

Then click Open and OK. Restart your Visual Studio application for the complete changes to take effect.

After Visual Studio restarts, the plugin will populate the controls in the tab you created. You can now drag
and drop the controls on the form in design mode or split mode only. You'll also be able to use the BP
Logix Intellisense. By typing your code you'll start to see Process Director Controls, classes, etc. show in
the list provided from the Intellisense.

To enable the Intellisense inside Visual Studio, you should create a stand-alone ASP.NET Web Application,
and then add the BPLogix.bpVSPlugin.dll to the Bin directory of the project. To create new Forms or

Developer's Reference Guide | 11



BP Logix Inc
Process Director Documentation

scripts, use Add New Item->Web User Control to create a new .ascx file. Do not place code in separate file.
For Forms, you can switch into Design or Split view to drag and drop controls onto the visual form. You
made need to build the application to enable the Intellisense. Ensure all Forms and script files have this
line at the top of the file:

<%@ Control Language="C#" AutoEventWireup="false"
    Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>

Additionally, you can add the following registry key to set the location where the Plugin downloads tem-
porary files (such as scripts and Forms) by setting the DocFolder property:
HKEY_LOCAL_MACHINE\SOFTWARE\BP Logix\Plugin\DocFolder

Or on a 64-bit operating system:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\BP Logix\Plugin\DocFolder

If you set this to a folder that is in your stand-alone Web Application, then you can use Check Out and Edit
for Forms and scripts. When the files are opened in Visual Studio, they'll gain the benefit of Intellisense
and compile-time error checking.

Form Scripts
Form scripts can be used for both Forms created with the Online Form Designer and custom forms cre-
ated as .ASCX files.

To develop Form Scripts inside Visual Studio, use the fully functional Visual Studio project installed with
the product, which is bundled into a ZIP archive named bpVS.zip. This ZIP file is located in the c:\Program
Files\BP Logix\Process Director\ directory by default. You can copy this utility to any computer that runs
Visual Studio 2013 or higher. Cloud customers can download the plugin from the Downloads section of
the BP Logix support site.

Refer to the sample files eform_*.ascx, as well as the SamplePage.aspx file referenced in the Custom
ASPX Pages section of the documentation, below.

Scripts for Forms created with the Online Form Designer should be placed into a separate .ASCX doc-
ument in the Content List. Here is the structure for this type of script:

<%@ Control Language="C#" AutoEventWireup="false"
    Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>
<script runat="server">
    // Events...

12 | Developer's Reference Guide

https://bplogix.zendesk.com/hc/en-us/sections/4408576448283-Process-Director-Software-and-Downloads


BP Logix Inc
Process Director Documentation

</script>
<script>

// Insert client-side JavaScript code and functions here...
</script>

Scripts for .ASCX Forms are typically placed in the same file as the .ASCX source form. Here is the struc-
ture for this type of form:

<%@ Control Language="C#" AutoEventWireup="false"
    Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>

 // Actual Form contents...
<script runat="server">

// Events...
</script>
<script>

// Insert client-side JavaScript code and functions here...
</script>

Form Script Events #
In both cases, the APIs and events available are the same. All events will be called with the following
environment:

LOCAL VARIABLE DESCRIPTION
CurrentForm Reference to the current Form instance object
CurrentUser Optional instance of the current User object
CurrentPartition Instance of the current Partition object
CurrentWorkflow Optional instance of the current Workflow object

(Deprecated)
CurrentWorkflowStep Optional instance of the current WorkflowStep object

(Deprecated)
CurrentWorkflowStepUser Optional instance of the current WorkflowStepUser

object (Deprecated)
CurrentProject Optional instance of the current Project object
CurrentProjectActivity Optional instance of the current ProjectActivity object
CurrentProjectActivityUser Optional instance of the current ProjectActivityUser

object
bp The bp environment
bpEventHandle The class that holds information about the event that

generated postback
bpEventHandle.EventType The type of event

bp.EventType.User – A custom button was hit

bp.EventType.Complete – A process complete but-

Developer's Reference Guide | 13



BP Logix Inc
Process Director Documentation

LOCAL VARIABLE DESCRIPTION

ton was hit

bp.EventType.Cancel – The cancel button was hit

bp.EventType.Save – The Save button was hit

bp.EventType.SaveAndClose – The Save and Close
button was hit

bp.EventType.Print – The Print button was hit

bp.EventType.CancelClose – The Cancel process
button was hit

bpEventHandle.EventName The name of the control that initiated the postback
bpEventHandle.EventControl The actual FormControl of the control that initiated

the postback
bpEventHandle.EventControl.ArrayNum The array row number of event, or 0 if event was not

caused inside array.

The Form life cycle has the following event callbacks:

<%@ Control Language="C#" AutoEventWireup="true"
    Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>
<script runat="server">
// These methods are optionally overridden to allow custom script
// to be inserted into the Form life-cycle.

// Called 1 time per form instance to initialize form fields
protected override void BP_FormInitialize()
{
}

// Called first time in ViewState that form is displayed
protected override void BP_ViewStateInit()
{
}

// Called for every event control and complete button
protected override void BP_Event(bp.EventType pEventType,
                                 string pEventName)
{
}

// Called prior to processing rules
protected override void BP_Rules()
{
}

// Called after processing rules
protected override void BP_Rules_Post()
{
}

// Called prior to completing before internal validation
protected override void BP_Validation()
{
}

14 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

// Called prior to completing after internal validation
protected override void BP_Validation_Post()
{
}

// Called prior to saving form data and closing form
protected override void BP_Completed()
{
}

// Called just prior to displaying a form
protected override void BP_Display()
{
}
</script>

These methods are optionally overridden to allow custom script to be inserted into the Form life-cycle:

EVENT DESCRIPTION
BP_FormInitialize() Called 1 time per form instance to initialize form fields
BP_ViewStateInit() Called first time in ViewState that form is displayed
BP_ Event (bp.EventType
pEventType,
    string pEventName)

See sample above for
example.

Called for every event control and complete button

pEventType: The type of control that caused
the event

bp.EventType.User A user event from a form control
bp.EventType.Complete One of the complete buttons on a

form
bp.EventType.Save Save form data
bp.EventType.SaveAndClose Save form data and close form
bp.EventType.Print Print form
bp.EventType.CancelClose Cancel process or Form submission
bpEventName The ID of the form control that

caused the event

BP_Rules() Called prior to processing rules
BP_Rules_Post() Called after processing rules
BP_Validation() Called prior to completing before internal validation
BP_Validation_Post() Called prior to completing after internal validation
BP_Completed() Called prior to saving form data and closing form
BP_Display() Called just prior to displaying a form

Developer's Reference Guide | 15



BP Logix Inc
Process Director Documentation

Process Scripts
This section documents how to write custom process scripts for Process Director. A process script is called
from a Script activity in a Process Timeline definition. The Script task type specifies a Script Function
Name. This function name can a custom script function. Your custom functions can be located on a spe-
cific custom script file (in the Process Director database). Each step in the process definition points to a
script file.

To develop process Scripts inside Visual Studio, use the fully functional Visual Studio project installed
with the product named bpVS.zip.
Using a Specific Process Script File
To write a custom script for a process, create a script file with “.ASCX” as the file extension on your local
hard drive. Add your custom script code and then upload the file to the Process Director database using
the Create New menu item in the Content List (select Document/File in the dropdown). Browse to the loc-
ation of your ASCX file and upload the file to Process Director. This file will be displayed in the Content
List on the server. To make changes to this script file, you must check out the file first, update it, and then
upload the new version. For information about modifying files and documents on Process Director, refer
to the Implementers Reference Guide. The script for a process is configured in the Properties page of the
process definition. The script must exist in the Process Director database and it will be called when a
Script task is run in the Process Timeline. For more information on configuring process definition prop-
erties refer to the Process Timeline topics in the Implementers Reference Guide.
Writing a Process Script Function
The optional parameters specified in the Script task are used to call your Script function in the process
custom script file. For example if you specify “SOME_PARM” as the Script Parameters specified in the
Script task, the parameter to your C# function (pParm in the example below) will be set to “SOME_
PARM”.  If you need to pass multiple values to the process script, you'll need to encode the values by sep-
arating them by commas or other techniques (e.g. MY_PARM,1,2). The entire string will be passed to the
process script function as a single parameter. You'll need to parse the string into its components using C#
string manipulation functions. Your function in the script file would look as follows:

<%@ Control Language="C#" AutoEventWireup="false"
    Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>
<script runat="server">
    public override void Process_Script(string pParm)

{
bp.log0("Called Process script:" + pParm);

    }
</script>

This function is immediately available to all processes as soon as the file is saved. You may also use Sys-
tem Variables in the Script Step parameter field to extend the capabilities of the process script.

This method will be called with the following environment:

LOCAL VARIABLE DESCRIPTION
CurrentWorkflow The current Workflow object (deprecated)

16 | Developer's Reference Guide

Process Timelines.htm


BP Logix Inc
Process Director Documentation

LOCAL VARIABLE DESCRIPTION
CurrentWorkflowStep The current WorkflowStep object (deprecated)
CurrentForm Optional Form instance object of the process form
CurrentPartition Instance of the current Partition object
CurrentProject Optional instance of the current Project object
CurrentProjectActivity Optional instance of the current ProjectActivity object
bp The bp environment

Debugging Process Scripts
To test your custom script, run the process that contains the Script task that calls your function. When
that step in the process is run, any error will cause the step to remain running and never complete. View
this step using the Timeline/Administration tab of the Timeline instance.

If any errors are encountered running the script, the step will stop with and have the status set to Error.
The status field of the step will show the exact error (e.g. a compile error for the script). Correct any errors
in your custom script and then right click the Timeline Activity in the Timeline/Administration tab of the
Timeline instance, and select Restart Activity. When your script runs successfully the activity will com-
plete and transition to the next step in the process.

You can also debug a process script using the logging functions, like bp.log0 and bp.log1.

Process Script Handlers
This section documents how to write custom script handlers for Process Director which are called prior to
each process step starting, when an error is encountered, and when the process step ends. Process
Timelines have similar script events that can be incorporated into the process script. You can configure a
single script file in the process definition by using the Advanced Options tab of the Settings.

Scripted behavior can be added to the beginning or end of any Process Timeline Activity. The script events
Timeline_StartActivity and Timeline_StopActivity events are used for Timelines. The Timeline_
StartActivity event is called prior to the start of each Timeline Activity. Similarly, the Timeline_
StopActivity event IS called when each Timeline Activity ends.
Using a Specific Process Script File
To write a custom script for a process, create a script file with “.ASCX” as the file extension on your local
hard drive. Add your custom script code and then upload the file to the Process Director database using
the Create New menu item in the Content List (select Document/File in the dropdown). Browse to the loc-
ation of your ASCX file and upload the file to Process Director. This file will be displayed in the Content
List on the server. To make changes to this script file, you must check out the file first, update it, and then
upload the new version. For information about modifying files and documents on Process Director, refer
to the Implementers Reference Guide. This script for a process is configured in the Properties page of the
process definition. The script must exist in the Process Director database and it will be called when a
Script task is run in the process. For more information on configuring process definition properties refer to
Workflow and Timeline chapters in the Implementers Reference Guide.

Developer's Reference Guide | 17



BP Logix Inc
Process Director Documentation

Writing the Script Handler
Your function in the script file would look as follows:

<%@ Control Language="C#" AutoEventWireup="false"
    Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>
<%@ Import Namespace="System.Collections.Generic" %>
<script runat="server">
    // these functions are used for Timeline activities
    public override void Timeline_Script(string pParm)

{
bp.log0 ("Timeline_Script: " + pParm);

    }
    public override void Timeline_PreActivity(List<ProcessUser> pUsers)

{
bp.log0 ("Timeline_PreActivity");

    }
    public override void Timeline_StartActivity()

{
bp.log0 ("Timeline_StartActivity");

    }
    public override void Timeline_StopActivity()

{
bp.log0 ("Timeline_StopActivity");

    }
    public override void Timeline_Check()

{
bp.log0 ("Timeline_Check");

    }
</script>

These functions are immediately available to all processes as soon as the file is uploaded to the Content
List.

Timeline_StartActivity will be called at the beginning of every step in the process, even if the step
has no users. It is called before Timeline_PreActivity.

Timeline_PreActivity will be called prior to every step in this process starting. The list of users which
will be assigned to the CurrentProjectActivity is passed in the pUsers parameter. You can add to,
remove, or replace users in this list. Timeline_PreActivity is only called for user steps.

Timeline_StopActivity is called prior to a step’s completion or termination.

Timeline_Check() enables you to check for advancing and due date/timer processing, and can be useful
to implement custom timer processing. These are optional overrides that can be defined in the script asso-
ciated with the Process Timeline.

When a custom timeline script alters the state of a process, it will be invoked immediately after the script
runs, so that changes made to the process state are immediately reflected to the user.

PROCESSUSER PROPERTIES DESCRIPTION

UID The UID of the user who will be assigned to this step

SUID Optional STEP USER ID that is starting this user, could be a group
step user record

AdminUID Optional, used to set the UID of the person adding the user to this
step

18 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROCESSUSER PROPERTIES DESCRIPTION

AdminComment Optional, used to set the comment from the person adding the user
to this step

This method will be called with the following environment:

LOCAL VARIABLE DESCRIPTION
CurrentWorkflow The current Workflow object (Deprecated)
CurrentWorkflowStep The current WorkflowStep object (Deprecated)
CurrentForm Optional Form instance object of the process form
CurrentPartition Instance of the current Partition object
CurrentProject Optional instance of the current Project object
CurrentProjectActivity Optional instance of the current ProjectActivity object
bp The bp environment

Knowledge View Scripts
This section provides a reference for writing custom Knowledge View scripts for Process Director. The
Knowledge View supports a custom script that can be called before the results are displayed to the user.
The custom scripts are stored in the Process Director database in the Content List. The custom script is
used to inspect, modify, calculate, or remove results from the Knowledge View.

To develop Knowledge View Scripts inside Visual Studio, use the fully functional Visual Studio project
installed with the product named bpVS.zip. Refer to the sample file kview_script.ascx.
Writing a Knowledge View Script Function
A Knowledge View can have a custom script that can alter the results of the displayed information.

When the Knowledge View runs, it will call this method in the script for EVERY row in the result:

public override bool KV_Display(List<NameValueEx> pColumns,
                                ContentObject pObject,
                                out bool pRemoveRow)

If you set the pRemoveRow to true, then the row being processed will be excluded from the report.

The example below will add the HTML “bold” tag around the value for the Amount columns.

<%@ Control Language="C#" AutoEventWireup="false"
    Inherits="BPLogix.WorkflowDirector.SDK.bpScript" %>
<%@ Import Namespace="System.Collections.Generic" %>
<%@ Import Namespace="BPLogix.WorkflowDirector.SDK" %>
<script runat="server">
    public override bool KV_Display(List<NameValueEx> pColumns,
                                    ContentObject pObject,
                                    out bool pRemoveRow)

{
pRemoveRow = false;// Do not remove the row being processed

        foreach (var entry in pColumns)
{

Developer's Reference Guide | 19



BP Logix Inc
Process Director Documentation

            // Bold the Amount column
            if (entry.Name == "Amount")

{
entry.Value = "<b>" + entry.Value + "</b>";

            }
        }
        return true;// Return true if a value has changed
}
</script>

Notice that Knowledge View scripts inherit from  BPLogix.WorkflowDirector.SDK.bpScript.

This method will be called with the following environment:

LOCAL VARIABLE DESCRIPTION
CurrentUser Optional instance of the current User object
CurrentPartition Instance of the current Partition object
bp The bp environment

NameValueEx List Object
Note that the Knowledge View script uses the NameValueEx list object to store the values in each of the
Knowledge View columns. The Value attribute of the NameValueEx list is always a string, but, of course,
the value may be derived from a non-string object. Let's say that a value we wish to find comes from a
checkbox. In that case, we would see the Value of the checkbox represented by the string values "True" or
"False". If the Value contains a string representation of a number, on which you'd like to do some math,
you can use the built-in Process Director conversion methods to convert the Value string to an appro-
priate numeric value.

In addition to the Value attribute, however, the NameValueEx list class also has a ValueEx attribute that
contains the actual .NET DataItem object for the field, or a decminal number.

The NameValueEx object constructor has four overloads:

//Null values
public NameValueEx()

//String Name and Value
public NameValueEx(string pName, string pValue)

//String Name and Value, and Decimal Number
public NameValueEx(string pName, string pValue, decimal pNumber)

//String name and Value, and List DataItem
public NameValueEx(string pName, string pValue, DataItem pDataItem)

Custom ASPX Pages
You can extend the BP Logix web application by providing your own custom .ASPX pages (typically placed
into the /custom folder). These pages can call BP Logix SDK APIs, or perform any other logic. This page
can be used, for example, to perform scheduled logic using the Windows Scheduler. Or you can write cus-
tom pages that are called from external applications or portals.

20 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

See the sample in the /custom/samples/SamplePage.aspx.sample file. Notice that the page is derived
from the BPLogix.WorkflowDirector.SDK.bpCustomPage class. This class enables you to call any BP Logix
SDK API from the new page. Your code will typically be placed into the Page_Load event.

To create custom ASPX pages inside Visual Studio, use the fully functional Visual Studio project installed
with the product named bpVS.zip. Refer to the sample file SamplePage.aspx.

A more detailed explanation of creating Custom ASPX Form pages is provided in the Creating ASP.NET
Forms topic.

Creating ASP.NET Forms
This section will describe how to create and manage a Form, how to set the different variables associated
with the Form form fields, and how to implement your custom scripting. You'll notice some differences
from previous versions, such as no more Form page refresh. Forms now utilize AJAX which eliminates the
page refresh when using events. Please keep in mind; this is for Form development using ASP.Net. We
won't be using the Form builder for this section.

For more information about the Form and its properties please refer to the Implementers Reference
Guide.

Adding a New Form Definition
Process Director can create new Forms as ASCX controls for you. Simply select Form Definition from the
Create New dropdown menu to open the Create Form screen.

You have three options to create the ASCX control Form from the Create Form screen. You'll find the
options in the dropdown at the top of the Create Form screen.

Developer's Reference Guide | 21

Implementers Reference.htm
Implementers Reference.htm


BP Logix Inc
Process Director Documentation

The three relevant options from which to choose are Upload Selected Form, Use Empty .ASCX Form, and
Use Template .ASCX Form, all of which are discussed below.

Option 1: Upload Selected Form
To create a new Form definition, you'll have to create an .ascx page using your development tool. There is
one line of code that must be included before you upload your new page. Please copy and paste the fol-
lowing in the first line of your page:

<%@ Control Language="C#" AutoEventWireup="false" Inher-
its="BPLogix.WorkflowDirector.SDK.bpFormASCX"%>

Once you've created your Form, you can upload it by selecting Form Definition from the Create New
menu. You'll be presented with a page to browse and select your form file. You'll also have the option to
provide a Name and Description for the Form definition.

Option 2: Use Empty .ASCX Form
If you use this option, Process Director will create an ASCX control that contains only basic code required
for the control. The basic code consists only of the document declaration at the top of the page, and a
<script> tag that contains the stubs for the common Process Director scripting methods.

Once you've created the control, you can Check Out the Form from the Edit tab of the Form definition,
and begin working on it in your development environment.

22 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Option 3: Use Template .ASCX Form
If you use this option, Process Director will create an ASCX control that contains a sample Form with
some controls, formatting styles, and other HTML content, in addition to the page declaration and script
stubs.

Again, you can edit this form in your development environment after checking out the form from the Edit
tab of the Form definition.

Developer's Reference Guide | 23



BP Logix Inc
Process Director Documentation

Editing an ASP.NET Form #
ASP.NET Forms can, once created, be edited by navigating to the Edit tab of the Form definition.

Check out the ASCX form by clicking the Check Out button. Doing so will check out the form for editing
and give you access to the editing features of the form definition.

24 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

To edit the form in Visual Studio, you can download it by clicking the Download Form button to download
the form to your local computer. You can also stop the editing process at any time, and revert to the cur-
rently saved version of the form by clicking the Cancel Check Out button.

Once you're done editing the form, you can provide the appropriate text for the Check In Description, then
click the Browse button to find the editied version of the form on your local computer and select it for
upload. Once you've done so, click the Upload New Version button to upload and check in the edited
form, which will replace the existing form with the newly edited version.

Developing a Form in the .NET environment
There are two ways to develop Forms within Process Director. The first uses the Online Form Designer
that's documented in the Implementers Reference. The other approach is to develop native ASP.NET
forms, which is described here.

To develop Forms inside Visual Studio, use the fully functional Visual Studio project installed with the
product named bpVS.zip. Refer to the sample files eform_*.aspx.

This section will provide you the basics of developing your Form in Visual Studio 2008. Developing in this
environment requires the knowledge to program in ASP.NET. You'll be able to use ASP.NET controls as
well as extended controls created by BP Logix.

When creating a Form for Process Director, you are actually creating a custom control (.ascx). You create
your Form just as if you were creating in the ..ASPX page. Below you'll see the basic structure of the Form.

<%@ Control Language="C#" AutoEventWireup="true" Inher-
its="BPLogix.WorkflowDirector.SDK.bpFormASCX"%>
<script runat="server">
// Add any events here that will be called as part of the Form
// life-cycle

Developer's Reference Guide | 25

Form Online Builder.htm


BP Logix Inc
Process Director Documentation

// See the Custom Scripting / Form Scripts section for more information
</script>

Include Files
This enables common functions to be called from other script files. To include a file in your Form use the
following syntax:

<!--#include file="~/Custom/MyScripts/script.ascx"-->

The .ascx must exist on the server file system and isn't controlled by Process Director (via the Content
List). A good location for an include file is the /custom/ folder in the Process Director web site installation
directory.

Using a .DLL file with Your Scripts
This is an approach to call code from custom scripts. Developers can make a “normal” .NET .dll and place
it into the \Program Files\BP Logix\Process Director\website\bin folder on the server. Then they can ref-
erence the classes in that .dll through any script code in the Process Director application. You can use the
GAC, but it is easier to use the bin folder (assuming the code wouldn't be used “outside” of the Process
Director environment). DLLs in this folder are accessible only to the Process Director application.

In your module placing the public classes into a namespace, such as:

namespace companyname.custom
{
    public class MyClass()

{
// … your methods, properties, etc

        public static void MyFunc()
{

        }
    }
}

Then inside a form script call this function using:

companyname.custom.MyClass.MyFunc();

Form Controls
This section outlines the various Process Director controls that can be placed onto Forms. These controls
are used to create and enhance Forms in addition to “normal” ASP.NET controls (such as TextBox,
DropDownList, etc). The properties can be set in the actual <bpx> control tag, or can be set via normal C#
properties.

AddRow
This Form control will create a button a user can click to add row(s) to an array.

26 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

ArrayName The name of the array this button is attached to.

At The location to add the new row(s). 0 (end of array).

ConfirmText Pops up a confirmation box when a user clicks the but-
ton with the specified text, allowing a user to cancel or
confirm the action which the button will take.

ImageURL Sets an optional image for the button.

OnClientClick Used to execute client-side JavaScript or call client
JavaScript functions. To prevent the button from caus-
ing a Post-back, place a return false; at the end of the
JavaScript string.

Rows The number of Rows to add. 1

Text Sets the optional button text.

Example

<bpx:AddRow runat="server" ArrayName="MyArray"/>

Array
This Form control places a repeating template section on a Form.  To default the array to a number of
rows simply go to the Form properties page and click on the edit link next to the array control that is in
the list of controls. Select Value à Number from the Default Value dropdown and enter the number to
default the number of rows to.
Properties
None
Example

<table>
    <tbody>
        <tr>
            <th>City</th>
            <th>State</th>
        </tr>
        <bpx:Array ID="ArrayTest" runat="server">
        <ItemTemplate>
        <tr>
            <td><bpx:bpTextBox ID="Text1" runat="server" /></td>
            <td><bpx:bpTextBox ID="Text2" runat="server" /></td>
        </tr>
        </ItemTemplate>
        </bpx:Array>
    </tbody>
</table>

ArrayRemoveRow

Developer's Reference Guide | 27



BP Logix Inc
Process Director Documentation

This Form control will create a button a user can click to remove a specific row from an array. You should
place this control directly in an array, so that the button is displayed on each row.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button with the specified
text, allowing a user to cancel or confirm the action which the button will take.

ImageURL Sets an optional image for the button.

OnClientClick Used to execute client-side JavaScript or call client JavaScript functions. To pre-
vent the button from causing a Post-back, place a return false; at the end of the
JavaScript string.

Text Sets the optional button text.

Example

<bpx:ArrayRemoveRow runat="server"/>

ArrayMoveUp
This Form control will create a button a user can click to move a Row up in the array.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button with the specified
text, allowing a user to cancel or confirm the action which the button will take.

ImageURL Sets an optional image for the button.

OnClientClick Used to execute client-side JavaScript or call client JavaScript functions. To pre-
vent the button from causing a Post-back, place a return false; at the end of the
JavaScript string.

Text Sets the optional button text.

Example

<bpx:ArrayMoveUp runat="server"/>

ArrayMoveDown
This Form control will create a button a user can click to move a Row down in the array.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button with the specified
text, allowing a user to cancel or confirm the action which the button will take.

28 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION

ImageURL Sets an optional image for the button.

OnClientClick Used to execute client-side JavaScript or call client JavaScript functions. To pre-
vent the button from causing a Post-back, place a return false; at the end of the
JavaScript string.

Text Sets the optional button text.

Example

<bpx:ArrayMoveDown runat="server"/>

Attach
This Form control will display a button to allow the user to attach files to the form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

AttachType Form

Workflow

Timeline

Process

Attach object (s) directly to
Form,

Attach object(s) to the current
Workflow instance as a Work-
flow reference.

Attach object(s) to the current
timeline instance as a
Timeline reference.

Attach object(s) to the current
Workflow or timeline instance.

Process

ClipboardImageName The optional name to use for
the attached images. This
parameter can use SysVars to
make the name dynamic. If
the items on the clipboard are
files, the actual file name will
be used as the new attach-
ment name.

ConfirmText Pops up a confirmation box
when a user clicks the button
with the specified text, allow-
ing a user to cancel or confirm
the action which the button

Developer's Reference Guide | 29



BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

will take.

GroupName Optional name of the group to
place the attachment(s) into.

ImageURL Sets an optional image for the
button.

ObjectType Document

Clipboard

Allow user to upload doc-
ument

Allow the user to use an item
from the clipboard

Document

OnClientClick Used to execute client- side
JavaScript or call client
JavaScript functions. To pre-
vent the button from causing
a Post- back, place a return
false; at the end of the
JavaScript string.

SingleFileUpload When set to "true", restricts
the upload to a single file.

false

Text Sets the optional button text.

Example

<bpx:Attach ID="ControlName" runat="server" GroupName="Group"/>

AttachKview
This control enables the user to attach an object to a Form instance by browsing for the object using a
Knowledge View.
Properties

PROPERTY NAME DESCRIPTION

AttachToParent=[1|0] If set to 1, this object will be attached to the parent of this Form
instance

AttachType Form – attach object(s) directly to Form

Workflow - attach object(s) to the current Workflow instance as a
Workflow reference

Process Timeline - attach object(s) to the current Process Timeline
instance as an Process Timeline reference

30 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION

Process - attach object (s) to the current Workflow or Process
Timeline instance

CopyObject=[1|0] If set to 1, this object will be copied to the new location (leaving
the old object alone)

GroupName Only display objects from the specified group

MoveObject=[1|0] If set to 1, this object will be moved to a new location (removing
the object in its old location)

QS A querystring to send data to the Knowledge View

Text Text displayed on the Form button

Example

{AttachKVIew:ControlName, AttachType=Form, GroupName=Group,
    Text=Text to Display, MoveObject=0}

AttributePicker
This Form control will create a picker control to allow users to pick meta data attributes.
Properties

PROPERTY NAME DESCRIPTION

StartingCategory Sets the category from which to show the initial attributes.

Text Sets the optional button text.

Example

<bpx:AttributePicker runat="server"/>

bpButton
This Form control is used to place a button on a Form. The button will typically be used when hooking up
to a Custom Task, or when writing custom C#.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button with the specified
text, allowing a user to cancel or confirm the action which the button will take.

OnClientClick Used to execute client-side JavaScript or call client JavaScript functions. To pre-
vent the button from causing a Post-back, place a return false; at the end of the
JavaScript string.

StartingCategory Sets an optional image for the button.

Text Sets the optional button text.

Developer's Reference Guide | 31



BP Logix Inc
Process Director Documentation

Example
This example will cause a Post-back to the server to process the event.

<bpx:bpButton ID="ControlName" Text="Text to Display" runat="server" />

This example will execute client JavaScript, and prevent a Post-back.

<bpx:bpButton ID="ControlName" Text="Text to Display"
    OnClientClick="MyFunc();return false;" runat="server" />

bpCheckBox
This Form control places a two-state (checked - true/unchecked - false) checkbox on the Form.  Useful for
yes/no data and enabling/disabling sections on a Form. 
Properties

PROPERTY NAME DESCRIPTION

CssClass To set the CSS class name for this control.

Text (optional) Accompanying label text for the check box

Example

<bpx:bpCheckBox ID="ControlName" runat="server" Text="Text to Display" />

bpImage
This Form control places a configurable image control on the Form.  The ImageURL property is required,
but all other properties are optional.
Properties

PROPERTY NAME DESCRIPTION

ImageURL The fully qualified URL of the source image's location.

Height Height of the image in pixels/percent.

Width Width of the image in pixels/percent.

URL The fully qualified URL of an asset to display when the image is clicked, i.e., to
make the image a hyperlink.

Target The hyperlink target type, e.g. "_blank" for the image hyperlink.

Style Any CSS styles to apply to the image

CssClass To set the CSS class name for this control.

Alt The alt text for the image.

32 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

<bpx:bpImage ImageURL="imgURL" Height="XX" Width="XXX" URL="HyperlinkTargetURL"
Target="HyperlinkTarget"
     Style="CSSStyles" CssClass="ClassName" Alt="Alt Image Text" />

bpLabel
This Form control will simply display Text. This can be used, for instance, when you'd like to conditionally
show text. You can associate rules with this control to affect the visibility. You'll use C# to get/set the
actual Text contents.
Properties

PROPERTY NAME DESCRIPTION

CssClass To set the CSS class name for this control.

Example

<bpx:bpLabel runat="server" ID="ControlName"/>

bpString
This Form control will display Text from a localized resource file. You can create custom localized strings
in the strings.resx files to easily display strings in different languages on forms. You can associate rules
with this control to affect the visibility.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

CssClass To set the CSS class name for this control.

DefaultString String display while editing form definition in Design
mode using VS plugin

ResourceID Name of resource in strings.resx or resource.resx

ResourceType Does string exist in strings.resx (Custom) or
resource.resx (Internal)

Custom

Example

<bpx:bpString runat="server" DefaultString="StringValue"
    ResourceID="ResIDString" />

bpTextBox
This Form control puts a space for a user to enter text on a Form. 

Developer's Reference Guide | 33



BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION

Columns To set the number of columns the control will use.

CssClass To set the CSS class name for this control.

Rows To set the number of rows the control will use.

TextMode SingleLine, Multiline, or Password

Example
This example will cause a Post-back to the server

<bpx:bpTextBox ID="ControlName" runat="server" Columns="NN"/>

ButtonArea
This Form control is used to control where the complete buttons for the Form are placed. Complete but-
tons are buttons such as OK, Cancel, Approve, Reject etc. The actual buttons that are placed in this area
are dependent on the current Timeline Activity, if any. If this control isn't present on a Form, then the but-
tons are added to the bottom of the form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

CancelConfirmText Pops up a confirmation box
when a user clicks the Cancel
button with the specified text,
allowing a user to return to
the form or cancelling out of
the form.

CancelImageURL Optional path to the image
used for the Cancel button on
a Form

CancelShow True
False

Enables the form to show or
hide the Cancel button.

True

CancelText Sets the text for the Cancel
button

Cancel

CompleteConfirmText Pops up a confirmation box
when a user clicks the Com-
plete button with the specified
text, allowing a user to cancel
the Complete or continue to

34 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

submit the form.

CompleteShow True

False

Enables the form to show or
hide the Complete button.

True

OKConfirmText Pops up a confirmation box
when a user clicks the OK but-
ton with the specified text,
allowing a user to cancel the
OK or continue submitting the
form.

OKImageURL Optional path to the image
used for the OK button on a
Form

OKShow True
False

Enables the form to show or
hide the OK button.

True

OKText Sets the text for the OK but-
ton

OK

Example
This example controls the location of the complete buttons, and changes the default text of the OK and
Cancel buttons.

<bpx:ButtonArea runat="server" OKText="OK Text"
    CancelText="Cancel Text"/>

Calculate
This Form control calculates an expression and places the result as text on a Form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

FormatString (optional) The format in which to display the result of
the Formula (Defaults to "{0:0.00}") - See Microsoft's
documentation on string formatting

Formula Expression to calculate a numerical value (can accept
System Variables)

Developer's Reference Guide | 35

https://learn.microsoft.com/en-us/dotnet/api/system.string.format?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.string.format?view=net-8.0


BP Logix Inc
Process Director Documentation

Example

<bpx:Calculate ID="ControlName" runat="server"
    Formula="{#FORM:Field1} * {#FORM:Field2}"
    FormatString="{0:0.0}" />

Cancel
This Form control will place a button on a Form which will cancel or delete the current Form or Process
Timeline.
Properties

PROPERTY NAME DESCRIPTION

CancelProject This enables you to cancel the associated timeline.

CancelWorkflow This enables you to cancel the associated Workflow.

ConfirmText Pops up a confirmation box when a user clicks the button with the
specified text, allowing a user to cancel or confirm the action which
the button will take.

DeleteForm This enables you to delete the form.

DeleteProject This enables you to delete the timeline.

DeleteWorkflow This enables you to delete the Workflow.

ImageURL Sets an optional image for the button.

Text Sets the optional button text.

Examples
To cancel associated Process Timeline:

<bpx:Cancel runat="server" CancelProject ="true"
    Text="Text to Display">
</bpx:Cancel>

To just delete this form:

<bpx:Cancel runat="server" DeleteForm="true"
    Text="Text to Display">
</bpx:Cancel>

To delete the Process Timeline and Form:

<bpx:Cancel runat="server" DeleteProject ="true"
    DeleteForm="true" Text="Text to Display">
</bpx:Cancel>

CategoryPicker
This Form control will create a picker control to allow users to pick meta data categories.

36 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Multiple Enables you to select multiple categories from the
picker.

"false"

StartingCategory Sets the initial category to display.

Text Sets the optional button text.

Example

<bpx:CategoryPicker runat="server"/>

CommentLog
This Form control enables a user to place a Comment Log on a Form.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Columns (Optional) The number of columns to display while
prompting for a comment

70

ControlName (Optional) The name of the comment log section. Use
this property if you have multiple comment logs on a
Form

Rows (Optional) The number of rows to display while prompt-
ing for a comment

4

Text (Optional) The text for the button used to add a com-
ment

Add Comment

Width (Optional) Width of the displayed comments 100%

Example

<bpx:CommentLog runat="server" ControlName=”ControlName” Width="50%"/>

ContentPicker
This Form control enables a user to choose an object in the content list.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

DocExtension (Optional) Limits the user to
choose only documents of the
specified extension (Type of

Developer's Reference Guide | 37



BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

"Document" only)

StartingFolder (Optional) The path to a
folder, limiting a user to
choose only objects in that
folder and its subfolders

Type (Optional) The type of object
(Folder, ContentObject, Script,
etc.) to pick. 

Folder

Example

<bpx:ContentPicker ID="ControName" runat="server"
    Type="Document" DocExtension="pdf" />

ControlPicker
This Form control will display a dropdown of all controls on this page.
Properties

PROPERTY NAME PROPERTY ATTRIBUTES DESCRIPTION

ControlType Input, Textarea, Date, But-
ton, Dropdown, Password,
Array, Section, Radio,
CheckBox, Custom, Cus-
tomTaskConfigSection, Cus-
tomTaskRunSection,
UserPicker, GroupPicker,
Attach, ShowAttach, Label.

Limits the type of control to show in the drop-
down.

DropdownPrompt Optional text to show on the dropdown if no user
is selected

Style To set the style (using any
CSS style).

Example

<bpx:ControlPicker ID="ControlName"
    DropdownPrompt="Prompt Text"
    runat="server" />

DatePicker
This Form control is a date picker control.

38 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION

BlockControl If set to true, will surround the control within an HTML block element.

Style To set the style (using any CSS style).

Example

<bpx:DatePicker ID="ControlName" runat="server"/>

DateTimePicker
This Form control is a date/time combination picker control.
Properties

PROPERTY NAME DESCRIPTION

EndTime (Optional) Sets the maximum time (of day) for the pre-selected picker values. 
Must exceed the StartTime value.

Interval (Optional) The amount of time (in minutes) between pre-selected picker values.

StartTime (Optional) Sets the beginning time (of day) for the pre-selected values available
for the picker.

Example

<bpx:DateTimePicker ID="ControlName" runat="server" />

DateDiff
This Form control is used to calculate the difference between 2 dates.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Date1 The first date or date / time

Date2 The second date or date / time

Type (Optional) The type of the difference

Years

Months

Days

BusinessDays

Hours

BusinessHours

Minutes

Days

Developer's Reference Guide | 39



BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Seconds

Example

<bpx:DateDiff ID="ControlName" Date1="1/1/2000" Date2="{form:my_date2}"
    runat="server"/>

DBConnectorPicker
This Form control will display a Database Connector Picker on the form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

DropdownPrompt Optional text to show on the dropdown if no connector
is selected

Example

<bpx:DBConnectorPicker ID="ControlName" DropdownPrompt="Prompt Text"
    runat="server" />

DropDown
This Form control puts a dropdown control on the form. 
Properties

PROPERTY NAME DESCRIPTION

CssClass To set the CSS class name for this control.

Mode Used to turn on type-ahead functionality for controls that use Business Values
as their data source, by setting the mode to "AutoComplete", e.g. Mode-
e="AutoComplete". With the type-ahead functionality implemented on the
control tag, you can link to the Business Value data on the Form definition by:

1. Setting the Dropdown control as an Event Control
2. Mapping the Set Form Data entries to run on the Form Field Event for

that Control.

Example
Dropdown with input items manually configured.

<bpx:DropDown ID="ControlName" runat="server" >
    <asp:ListItem Text="DisplayText1" Value="Value1" />
    <asp:ListItem Text="DisplayText2" Value="Value2" />
</bpx:DropDown>

Dropdown configured for use as a type-ahead dropdown for use with a Business Value.

40 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

<bpx:DropDown ID="ControlName" Mode="AutoComplete" runat="server"
></bpx:DropDown>

FormErrorStrings
This Form control is used to identify the area(s) where error messages are displayed on the Form. If this
control isn't present on a Form, then the error messages are placed at the top and bottom of the form.
Properties
None
Example

<bpx:FormErrorStrings runat="server"/>

FormInfoStrings
This Form control is used to identify the area(s) where informational messages are displayed on the Form.
If this control isn't present on a Form, then the informational messages are placed at the top and bottom
of the form.
Properties
None
Example

<bpx:FormInfoStrings runat="server"/>

GroupPicker
This Form control will display a Group Picker on the form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

DropdownPrompt Optional text to show on the dropdown if no user is
selected

Height For ListBox PickerType only; sets the height of the
ListBox control

Multiple True Allow multiple users to be selected.

PickerType Dropdown
Popup

ListBox

Dropdown – use a dropdown control
Popup – use a popup control.

ListBox – use a ListBox control.

Width For ListBox PickerType only; sets the width of the
ListBox control

Developer's Reference Guide | 41



BP Logix Inc
Process Director Documentation

Example

<bpx:GroupPicker ID="ControlName" DropdownPrompt="Prompt Text"
    PickerType="Popup" runat="server" Multiple="false" />

HTML
This Form control will display an HTML string.
Properties

PROPERTY NAME DESCRIPTION

HTMLString Enables you to use HTML on a Form. You can use multiple SysVars in this con-
trol.

Example

<bpx:HTML ID="ControlName" runat="server"
    HTMLString="<a href='{EMAIL_URL}'>click here</a>"/>

IgnoreSection
This Form control is used to create a group or section of controls and text on a Form. This section is used
to tell the Form processor to ignore the controls inside this section. This can be used, for example, to sur-
round custom controls so that the Form processor doesn't attempt to process the internal form fields.
Properties
None
Example

<bpx:IgnoreSection runat="server">
<!--Items in this section are ignored by the Form processor-->

</bpx:IgnoreSection>

KView
This Form control is used to place a Knowledge View on the Form. You can use a button to open a Know-
ledge View or you can view a Knowledge View inline on the form.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Height Only for iframe – The height of the iframe. 300px

QS Optional list of QueryString parameters to pass to the
KView. The KView can, for example, use these
QueryString parameters in its filters.

Ensure that you've created a filter corresponding to
each QS filter. You must use the QueryString type on
the right side in the Knowledge View filter.

42 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Text Only for Popup – The text on the button. View Knowledge View

Type Iframe – Displays the KView in an inline IFRAME on the
form.

Popup – A button will be shown on the form. When
clicked, a pop window showing the KView will be
launched

Iframe

Width Only for iframe – The width of the iframe 100%

Example

{KView:ControlName, Text="Text to Display", Type=Popup, QS="Query String 1",
    QS="Query String 2"}

The syntax for the Form Builder is:

store={form: store}
appname={form: appname}

ListBox
This Form control is used to place a List Box control on a Form, allowing a user to select more than one
entry in the list.  This ListBox control can be populated via Custom Tasks, scripts, or with the asp:ListItem
tag. Note that commas in a ListBox item value aren't valid.  For any ListBox item with a comma in the
value, the comma will become a semi- colon upon ListBox creation (this doesn't apply when pro-
grammatically adding items).
Properties

PROPERTY NAME DESCRIPTION

Height (optional) The height of the ListBox control (e.g., 100px, 15ex, 25%, etc.)

Items The collection of items in the ListBox - See ASP ListControlItems property for
usage examples.

SelectedValues A list of selected values in the Items collection

SelectedValuesString A comma-separated string representation of the list of selected values in the
Items collection

Width (optional) The width of the ListBox control (e.g., 200px, 20em, 30%, etc.)

Example

<bpx:ListBox ID="ControlName" runat="server">
    <asp:ListItem Value="Value1" Text="DisplayText1" />
    <asp:ListItem Value="Value2" Text="DisplayText2" />
    <asp:ListItem Value="Value3" Text="DisplayText3" />
</bpx:ListBox>

Developer's Reference Guide | 43



BP Logix Inc
Process Director Documentation

Print
This Form control puts a single print button control on the form.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button with the specified
text, allowing a user to cancel or confirm the action which the button will take.

ImageURL Sets an optional image for the button.

Style To set the style for this control.

Text Displays the label of the button.

Example

<bpx:Print ID="ControlName" Text="Text to Display" runat=”server” />

Radio
This Form control puts a Radio Group control on the form. 
Properties

PROPERTY NAME DESCRIPTION

CssClass To set the CSS class name for this control.

Example

<bpx:Radio ID="ControlName" runat="server" CssClass="MyClass">
    <asp:ListItem Text="DisplayText1" Value="Value1" />
    <asp:ListItem Text="DisplayText2" Value="Value2" />
</bpx:Radio>

Rating
This Form control puts a Rating control on the Form.
Properties

PROPERTY NAME DESCRIPTION

ItemCount The integer number of stars to display for the rating, up to a maximum of ten.

Precision Determines whether or not the rating consists of whole stars or some other
increment.

Example

<bpx:Rating runat="server" ID="ControlName" ItemCount="<int>"
Precision="Item|Half|Exact" />

RemoveRow

44 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This Form control will create a button a user can click to remove row(s) to an array.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

ArrayName The name of the array this button is attached to.

At The location to remove the new row(s). 0 (end of array).

ConfirmText Pops up a confirmation box when a user clicks the but-
ton with the specified text, allowing a user to cancel or
confirm the action which the button will take.

ImageURL Sets an optional image for the button.

OnClientClick Used to execute client-side JavaScript or call client
JavaScript functions. To prevent the button from caus-
ing a Post-back, place a return false; at the end of the
JavaScript string.

Rows The number of Rows to remove. 1

Text Sets the optional button text.

Example

<bpx:RemoveRow runat="server" ArrayName="MyArray"/>

RichText
This Form control places a rich text editor on a Form.  This enables a user to enter text as well as format
it and place links and other rich text controls within the Form control.
Properties

PROPERTY NAME DESCRIPTION

Height (optional) The height of the ListBox control (e.g., 100px)

Width (optional) The width of the ListBox control (e.g., 200px)

Example
This example will cause a Post-back to the server.

<bpx:RichText ID="ControlName" runat="server" Height="NNNpx" Width="NNNpx" />

RoutingSlip
Display the routing slip for the Process Timeline package on the form.

Developer's Reference Guide | 45



BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION PROPERTY
ATTRIBUTES

DEFAULT VALUE

ActiveActivityOnly Should the routing slip only
display the active activity?

True

False

False

ActiveStepOnly Should the routing slip only
display the active step?

True

False

False

ActivityName An optional comma-separated
list of activities to display the
routing slip in

MostRecentInstance Should the routing slip display
only the most recent step
instance? If this is false, then
the routing slip will show the
users every time a step ran.

True

False

False

ShowCancelled Should routing slip display
users that have been can-
celed?

True

False

True

ShowComments Should Routing Slip display
the comments?

True

False

True

ShowCompleted Should routing slip display
users that have completed the
step?

True

False

True

ShowCompletedOn Shows the date the task was
completed for each par-
ticipant in the routing slip.

True

False

False

ShowHeader Should Routing Slip display
the header.

True

False

True

ShowInitiator Should the process initiator be
displayed?

True

False

false

ShowParticipants Shows the name of each par-
ticipant. You can use this, for
example, to hide the names of
the participants, and only
show the signature image.

True

False

True

ShowPending Should routing slip display
users that have not began?

True False

46 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION PROPERTY
ATTRIBUTES

DEFAULT VALUE

False

ShowReassigned Should routing slip display
users that have been reas-
signed?

True

False

True

ShowResult Shows the Result column in
the routing slip.

True

False

True

ShowRunning Should routing slip display
users currently running?

True

False

True

ShowSignatures Should routing slip display
user’s signatures?

True

False

True

ShowStatus Shows the Status column in
the routing slip.

True

False

True

ShowStep Groups the users in the rout-
ing slip according to the step
they ran in.

True

False

True

ShowTimedOut Should routing slip display
users that have timed out?

True

False

True

StepName An optional comma-separated
list of steps to display the rout-
ing slip in.

TimelineName A partial match for a timeline
definition name, restricting
the routing slip to be dis-
played in the matching
Timelines.

UseDateTime Optionally shows Date and
Time if true

True

False

False

WorkflowName A partial match for a Workflow
definition name, restricting
the routing slip to be dis-
played in the matching Work-
flows.

Example
This example will show the routing slip for a single step

Developer's Reference Guide | 47



BP Logix Inc
Process Director Documentation

<bpx:RoutingSlip runat="server" StepName="Step Name"/>

This example will show the routing slip for the active step and only show the active users.

<bpx:RoutingSlip runat="server" ActiveStepOnly="true"
    ShowRunning="true" ShowCompleted="false"
    ShowCancelled="false" ShowTimedOut="false"/>

Save
The “save” (close=false) will only appear when the user is viewing the form in a process task. The “save
and close” (close=true) will always appear. The “save and close” will add an entry to the users task list.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Close The Close parameter can be set to true or false. True

ConfirmText Pops up a confirmation box when a user clicks the but-
ton with the specified text, allowing a user to cancel or
confirm the action which the button will take.

ImageURL Sets an optional image for the button.

Text Sets the optional button text.

Example
This example will cause a Post-back to the server to save the form contents.

<bpx:Save ID="ControlName" runat="server" Text="Text to Display"
    Close="true"/>

Section
This Form control is used to create a group or section of controls and text on a Form. This section can be
used to apply formatting, required setting, enabling, or visibility rules to all elements in a section.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

BodyCssClass To set the CSS class name for the body of the section.

BodyStyle To set the style (using any CSS style) for the body of
the section.

CanCollapse Set this property to “true” males this section a col-
lapsible section.

False

CollapseImageURL Optional URL to image to use for Collapse

Expanded Set to true to have the control viewed in the Expanded
state initially. Set to false to have the control viewed

True

48 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION DEFAULT VALUE

collapsed initially.

ExpandImageURL Optional URL to image to use for Expand

HeaderCssClass To set the CSS class name for the header.

HeaderStyle To set the style (using any CSS style) for the header.

Text The text for the “header” of the CollapseSection

WrapperTag The section can optionally be enclosed with an HTML
element such as a div or span. A div uses “block”
formatting in HTML (so that the section appears on the
next line), where the span uses “inline” formatting.

Div

Example
This sample will create a section on a form to collect addresses. The section will be surrounded with an
HTML DIV block.

<bpx:Section runat="server" ID="ControlName">
<!--Some Form controls-->

</bpx:Section>

This sample will create a section that flows “inline” with the surround HTML.

<bpx:Section runat="server" ID="ControlName" WrapperTag="span">
<!--Some more Form controls and HTML-->

</bpx:Section>

ShowAttach
This Form control will display a table showing the attachments that match the desired criteria.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

AttachType Form

Workflow

Project

Process

Attach object (s) directly to
Form

Attach object(s) to the current
Workflow instance as an Work-
flow reference

Attach object(s) to the current
timeline instance

Attach object(s) to the current
Workflow or timeline instance

Process

GroupName Optional filter of the group

Developer's Reference Guide | 49



BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

that attachments must belong
to.

NameAsView True

False

Enables the attachment name
to be a hot link. Same
fucntionality as the ShowView
property.

False

ObjectType Document

Form

NotSet

Only shows documents.

Only shows form instances

Shows all types of objects

NotSet

ShowDate True
False

Show the date for each attach-
ment?

True

ShowDownload True
False

Show the Download link for
each document attachment?

True

ShowEdit True
False

Show the Edit link for each
document attachment?

False

ShowRemove True
False

Show the Remove  link for
each attachment?

True

ShowUser True
False

Show the user for each attach-
ment?

True

ShowView True
False

Show the View link for each
attachment?

True

Text Sets the optional text to dis-
play above attachments.

ViewInline True
False

Enables the user to select a
document to view inline on
the Form in an IFRAME.

False

ViewInlineHeight Optional parameter to set the
height of the IFRAME for the
selected document. Use any
HTML compatible string such
as 300px.

200px

Example

<bpx:ShowAttach ID="ControlName" runat="server" GroupName="Group"/>

ShowAttachKView

50 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This Form control will add an Iframe to the Form showing a Knowledge View of attached objects.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

AttachType Form

Workflow

Process Timeline

Process

show object (s) attached to
Form

show object(s) attached to the
current Workflow instance as a
Workflow reference

show object(s) attached to the
current Process Timeline
instance as a Process Timeline
reference

show object(s) attached to the
current Workflow or Process
Timeline instance

Process

GroupName Specifies to which group
objects shown on the Know-
ledge View should be restric-
ted.

Height Height of the Iframe in pixels.

ShowParents If set the 1, the Knowledge
View will show the parents of
the object.

Null (parent isn't
shown)

Width Width of the Iframe in pixels.

Example

<bpx:ShowAttachKView ID="ControlName", Height="NNN", Width="NNN" />

ShowReport
This Form control will add a viewer to a Form to display a Report object in the Form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

Height The height, in pixels, of the Report's display on the
Form.

ID The Control's ID.

Developer's Reference Guide | 51



BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

ImageOnly Boolean Display an image only for the Report

ImageURL The IRL of an image to display for the Report.

QS The query string to use for the report's parameters, if
any.

RID The Report's ID.

SmallImage Boolean Display the image in a small format.

Text Text to display as the Report's Title.

Type IFrame
Popup
Image
HTML

The display type for the control to display on the form.

Width The Width, in pixels, of the Report's display on the
Form.

Example

<bpx:ShowReport ID="ControlName" runat="server" RID="ReportID" Height="NNN"
Width="NNN"
    Text="Text to Display" ImageURL="ImgURL" ImageOnly="true" SmallImage="True"
Type="IFrame"

QS="Query String">
</bpx:ShowReport>

SignatureComments
This Form control will display a textbox on the form to enter Workflow comments.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Columns Sets the width of the textbox. 70

Rows Sets the height of the textbox. 4

Style To set the style for this control.

Text Sets the optional default text in the textbox.

Example

<bpx:SignatureComments id="ControlName" runat="server"
    Text="Text to Display"/>

Slider
This Form control will display Slider control on the Form to set a value between 0 and 100.

52 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

TrackPosition The visual position of the track indicator. BottomRight

Height Sets the height of the control. (Optional)

Width Sets the width of the control. (Optional)

ShowDecreaseHandler Displays the icon to decrease the slider value.
(Optional)

True

ShowIncreaseHandle Displays the icon to increase the slider value.
(Optional)

True

WrapperTag The outer HTML tag, e.g. "DIV" to use as a container
for the control, if any. (Optional)

Alt The Alt Text to use for accessibility.

Example

<bpx:Slider runat="server" TrackPosition="BottomRight|Center|TopLeft" ID="Con-
trolName"
    Style="CSSStyles" CssClass="ClassName" Height="<int>" Width="<int>"
    ShowDecreaseHandler="true|false" ShowIncreaseHandle="true|false"
    WrapperTag="HTMLTag" Alt="Alt Text" />

Sort
This Form control will place a button on a Form which will sort an array.
Properties

PROPERTY NAME DESCRIPTION

ArrayName Specify the name of the array to sort.

Descending Specify true to sort in descending order.

ImageURL Sets an optional image for the button.

Primary Specify the column name of the primary sort key.

Secondary Specify the column name of the optional secondary sort key.

Tertiary Specify the column name of the optional tertiary sort key.

Text Sets the optional button text.

Examples

<bpx:Sort runat="server" ID="ControlName" Text="Text to Display"
    ArrayName="MyArray" Primary="ColumnName" />

Sum

Developer's Reference Guide | 53



BP Logix Inc
Process Director Documentation

This Form control sums all items of a column in an array. Please note the ID is optional as it can be a sys-
tem variable.
Properties

PROPERTY NAME DESCRIPTION

Column The column in an array that you'd like to sum up.

Example

<bpx:Sum ID="ControlName" runat="server" Column="ColumnName"/>

SysVar
This Form control is used to evaluate and display a System Variable. You can pass an entire System Vari-
able string in the SysVarString property, or you can break apart the System Variable into individual prop-
erties.
Properties

PROPERTY NAME DESCRIPTION

-Or-

Encode Optionally set the encoding type.

IfNull Optionally set the “If sysvar is null” string.

Post Optionally set the “postfix” string.

Pre Optionally set the “prefix” string.

SysVarName Set the system Variable name.

SysVarNamedParms Optionally sets the System Variable named parameters. Multiple parameters
can be passed separated by a comma.

SysVarParms Optionally sets the System Variable parameters. Multiple parameters can be
passed separated by a colon.

SysVarString Set this property to pass an entire System Variable in one string.

Example

<bpx:SysVar ID="ControlName" runat="server" SysVarName="SYSVAR_NAME"
    SysVarNamedParms="SysVarParam1:SysvarParam2"/>

Use Case Examples
This example displays the date 1 week from now.

<bpx:SysVar ID="SysVar1" runat="server" SysVarName="CURR_DATE"
    SysVarNamedParms="Days=7"/>

This example displays the current user’s ID on the form. Notice the ! to HTML-encode the string.

54 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

<bpx:SysVar ID="SysVar2" runat="server" SysVarString="{!CURR_USER }"/>

Tab
This control is used to identify each tab in a tab strip. The value of the TabStrip will be the selected Tab.
Properties

PROPERTY NAME DESCRIPTION

PageViewID The ID of the related TabContent control

Text Optional text for the actual Tab

Value Optional value for the control if this tab is selected

See the TabContent control below for an extended code sample.

TabContent
This Form control contains the actual content for a single tab. You can place any number of Form con-
trols inside a TabContent section.
Properties

PROPERTY NAME DESCRIPTION

ID The ID of the content for the tab strip

Example

<bpx:TabStrip runat="server" ID="MyTabStrip"
    MultiPageID="MyTabStrip_Content">
    <Tabs>
        <bpx:Tab runat="server" PageViewID="tab1" />
        <bpx:Tab runat="server" PageViewID="tab2" />
    </Tabs>
</bpx:TabStrip>
<bpx:TabStripContent runat="server" ID="MyTabStrip_Content">
    <bpx:TabContent ID="tab1" runat="server">

<!--Form data inside tab 1. This can include any form control-->
    </bpx:TabContent>
    <bpx:TabContent ID="tab2" runat="server">

<!--Form data inside tab 2-->
    </bpx:TabContent>
</bpx:TabStripContent>

TabStrip
This Form control creates a tab strip section.
Properties

PROPERTY NAME DESCRIPTION

ID Optional ID if the value of the selected tab should be maintained

MultiPageID The ID of the related TabStripContent control

Developer's Reference Guide | 55



BP Logix Inc
Process Director Documentation

See the TabContent control above for an extended code sample.

TabStripContent
This control identifies the actual contents of the various tabs.
Properties

PROPERTY NAME DESCRIPTION

ID The ID of the content for the tab strip

See the TabContent control above for an extended code sample.

TimePicker
This Form control places a picker for selecting time values on a Form.
Properties

PROPERTY NAME DESCRIPTION

EndTime (Optional) Sets the maximum time (of day) for the pre-selected picker values. 
Must exceed the StartTime value.

Interval (Optional) The amount of time (in minutes) between pre-selected picker values.

StartTime (Optional) Sets the beginning time (of day) for the pre-selected values available
for the picker.

Example

<bpx:TimePicker ID="ControlName" runat="server" StartTime="11AM"
    EndTime="3:45pm" Interval="15" />

UserPicker
This Form control will display a User Picker on the form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

DropdownPrompt Optional text to show on the dropdown if no user is
selected

Height For ListBox PickerType only; sets the height of the
ListBox control

InGroup Optional filter to only show users that are members of
the specified group.

Multiple True Allow multiple users to be selected.

PickerType Dropdown Dropdown – use a dropdown control

56 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

Popup

ListBox

Popup – use a popup control.
ListBox – use a listbox control.

Width For ListBox PickerType only; sets the width of the
ListBox control

Example

<bpx:UserPicker ID="ControlName" DropdownPrompt="Prompt Text"
    PickerType="Popup" runat="server"
    Multiple="true" InGroup="GroupName" />

Form Controls and JavaScript
You can use JavaScript to access the actual HTML controls for BP Logix controls and bind JavaScript
events to them. For example, the JavaScript:
CurrentForm.FormControls["YOUR_CONTROL"]

returns the HTML object in JavaScript. Therefore, you could use:
CurrentForm.FormControls["BpTextBox1"].onkeypress = BpTextBox2_Keypressed;

to bind to the onkeypress event.

Note that if you want this event to fire even after a postback (such as a button event), you should place
this into a bpUserJavaScript function on your page. This function will be called after the initial page load,
AND after each postback. For example, place this on your ASCX page:

function bpUserJavaScript()
{
    CurrentForm.FormControls["ControlName"].onkeypress = BpTextBox2_Keypressed;
}

In addition, you can simply use the native ASP.NET textbox, checkbox, radio button, or dropdown controls
and their corresponding server tags, and use standard JavaScript for those controls. Other native ASP.NET
controls aren't supported for this functionality.

Custom Workspace Portlets
When creating home page portlets in workspaces, it's often helpful to use a particular URL to display in a
portlet, using the "Specific URL" setting in the portlet's configuration. For internal URLS, however, the rel-
ative paths may change to the URL depending on whether the workspace is on a development server or a
production server. You may also want to show different URLs in a portlet based on the user's identity,
work center, etc. In cases like these, you need to be able to make the URL dynamic, rather than using a
hard-coded URL. Through the use of Custom Variables you can create a variable to store the appropriate
URLs you might wish to display, as well as add logic to determine when different URLs should be dis-
played.

Developer's Reference Guide | 57



BP Logix Inc
Process Director Documentation

Process Director allows you to set your own system variables in the vars.cs.ascx file. All custom vars that
you create are formatted as strings, so you should use string syntax when setting the variable's value, i.e.,
use double quotes ("") around the value. Process Director will convert custom vars to numbers on the fly if
numeric comparisons or calculations are required. Custom vars that you create are stored in a custom dic-
tionary as key/value pairs.

There are two methods available in the custom vars file for creating custom vars: SetSystemVars and
PreSetSystemVars. The PreSetSystemVars method is called prior to initializing the Process Director data-
base, while the SetSystemVars method is called after database initialization.

In general, this means that the default method to use when creating custom vars is the PreSetSystemVars
method; however, if you need to set the value of the var based on information stored in the database,
such as the identity of the user or the workspace in which the user is working, you must use the SetSys-
temVars method.

The following example shows how to set a simple custom variable to a URL.

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//This creates a new custom var that can be access from anywhere within
    //Process Director by using the syntax {CustomVar:PORTLET_URL}

bp.Vars["PORTLET_URL"] = "http://www.myurl.com";
}

You can also add any programming logic you'd like here, to display different URLs under the different con-
ditions you devise.

Using the syntax {CustomVar:MY_VAR} elsewhere in Process Director will return the custom variable (in
this case, "MY_VAR") value that was defined in the vars.cs.ascx file.

In the Home Page Windows tab of the Workspace configuration screen, set the Type of the portlet in
which you wish to display a URL to "Specific URL". An input box labeled "URL" will appear beside the Type
dropdown.

In the URL input box, type the name of the custom variable you created, using the following syntax:
{customvar:PORTLET_URL}

58 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Custom Tasks
Custom Tasks can be written in Process Director and used by Forms and Process Timeline definitions. A
Custom Task enables common business logic to be packaged in a reusable way and made available to
users that are building Forms and Process Timelines. You should be familiar with writing custom scripts
for Forms and Process Timelines before writing a Custom Task. There are two types of Custom Tasks;
Form Custom Tasks and Process Custom Tasks.

What Custom Tasks Can Be Used For
Custom Tasks can provide various types of business functions that are unique to your environment, or
common functions that can be used across multiple Form and Process Timeline definitions. For sample
Custom Tasks contact BP Logix.

Developer's Reference Guide | 59



BP Logix Inc
Process Director Documentation

Form Custom Tasks
A Form Custom Task provides users that are building Forms the ability to execute custom business logic
when the end-user is filling out the Form. A Custom Task is mapped to an event on the Form (e.g., a but-
ton). When the end-user triggers this event, the Form Custom Task script will be executed. A Form Cus-
tom Task can provide a mapping of external fields (e.g. database) to the fields on a Form.

When the script for a Form Custom Task is run, it can optionally display an interface to the user. The Cus-
tom Task script can query and/or set any of the form data on the container Form.

Process Custom Tasks
A Process Custom Task provides users that are building processes the ability to use custom business logic
in the Process Timeline definition. The Custom Tasks will display a Form interface to the user building the
Process Timeline that enables them to configure the data required for the Custom Task. This con-
figuration form is available from the Custom Task tab of a Process Timeline activity of the Custom Task
Activity Type. This configuration data will be available to the Custom Task script when the Timeline Activ-
ity is run. The Custom Task script will run in a similar environment to a Timeline script and has access to
all Timeline objects and their data.

A Process Custom Task can't display an interface to the end-user participating in the process. The only
interface displayed is during the configuration of the Custom Task in the Process Timeline definition.

How Custom Tasks Work
Custom Tasks in Process Director provide a way to package reusable functions for Form builders and pro-
cess implementers. They consist of a Form and a script file. This enables your business logic to be placed
in the script, and the Form is used to collect configuration information for the script, and optionally can
display an interface (Form Custom Tasks only). a Form Custom Task can be mapped to different events
(e.g. form display, button, etc.) on a standard Form and are run when the event occurs.

Configuration vs. Running
The Custom Tasks are executed in the following modes:

ConfigurationThis is when the user is configuring the data needed for the Custom Task to run. During the
configuration, it is common to display a list of the form fields in the container Form. This enables fields to
be mapped to external sources by the builder of a Form, without requiring them to have any special nam-
ing convention for their form fields.

Run-time (run)The Custom Task is run when a mapped Form event is triggered or when aCustom Task
Timeline Activity has been invoked. When a Custom Task is run, it has access to the configuration data
and the container Form.

Configuration Data
When a Custom Task is configured, a form data instance is created that contains the configuration data
entered. This form instance is stored “under” the Form definition or Process Timeline definition, depend-
ing on the type of Custom Task. When the Custom Task is run (whether in a Form or Process Timeline), it
has access to all this configuration data in this form instance.

60 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Container Form
A Custom Task can have a “container Form”. This is the standard Form that is displayed to the user. a
Form Custom Task is mapped to an event on the container Form. A container Form is optional for a Pro-
cess Custom Task, but can be specified as part of the step configuration on the Custom Task tab of the
Timeline Activity's definition. The Form and script part of a Custom Tasks has access to the container
form data.

Creating a Custom Task
A Custom Task requires a Form created in the .NET environment similar to how a Form is created. To cre-
ate a Form for a Custom Task, use the Create New menu item in the Content List and select Form Defin-
ition in the dropdown. Then select from the template dropdown “Use Empty .ASCX form”.  The Form
must be created using the special options in the Form Definition page that is displayed. A Custom Task
can be created as a Form-only Custom Task, a process-only Custom Task, or a Custom Task that can be
used by both Forms and processes. This Form will also display any Custom Task configuration.

These events are called for forms and while configuring a Custom Task:

public override void BP_Init()
public override void BP_Event(bp.EventType pEventType, string pEventName)
public override void BP_Validation()
public override void BP_Display()
public override void BP_Completed()

When a Custom Task is mapped to a Form, the following Custom Task function will be called:

protected override bool CT_RunTask(bp.FormCTMappedTo pMappedTo, string
pEventName)

This event is called to "run" a Custom Task. It should return "true" to show the Custom Task GUI, or false
to continue processing the form.

public override bool CT_RunTask(bp.FormCTMappedTo pMappedTo, string pEventName)

This function should return "true" to show the Custom Task GUI.

This is created like any other Custom Task (Form, Process), and when the rule is evaluated that uses the
CT, this event will be called:

public override DataItem CT_RunRuleTask()

This is so the Custom Task can return a string, a list of UIDs, etc.

These events are called for Custom Tasks while running a GUI:

public override void CT_Init()
public override void CT_Event(bp.EventType pEventType, string pEventName)
public override bool CT_Validation()
public override void CT_Display()
public override void CT_Completed()

Use this.FormInfo to access the current Form info. For example:

Developer's Reference Guide | 61



BP Logix Inc
Process Director Documentation

this.FormInfo.FormControl("SomeTextControl").Text = "This is new text";

While in a Custom Task run or GUI, use this.ContainerFormInfo to access the containers form info (get/set
form fields, etc). For example:

this.ContainerFormInfo.FormControl("SomeContainerControl").Required = true;

Use this.FormInfo.AddInfoMessage and this.FormInfo.AddErrorMessage to add error or info messages to
forms (e.g., for validation). For example:

this.FormInfo.AddInfoMessage(new FormMessageString("This info message
    will display on the form!"));

A Custom Task may have 2 sections, FormControlCustomTaskConfig and FormControlCustomTaskRun.
For example:

<bpx:FormControlCustomTaskConfig runat="server">
<!--This section includes stuff that is shown when a Custom Task is
being configured-->

    <asp:TextBox ID="config_text1" runat="server"></asp:TextBox>
</bpx:FormControlCustomTaskConfig>

<bpx:FormControlCustomTaskRun runat="server">
<!--This section includes stuff that is shown when a Custom Task is
run inside a Form (if CT_RunTask returns true).-->

    <asp:TextBox ID="run_text1" runat="server"></asp:TextBox>
</bpx:FormControlCustomTaskRun>

Web Service Custom Tasks
Some of the Custom Tasks can utilize Web Services (e.g. calling a remote Web Service to look up
employee information from an employee ID stored on a form). Only certain types of Web Services are dir-
ectly supported. These Web Services must use primitive data types such as numbers and strings as para-
meters. Other, more complex Web Services, can be supported by "wrapping" them in a proxy Web Service.
This proxy Web Service calls the actual web service, but exposes it using primitive data types that the Cus-
tom Tasks support.

An example of a Web Service wrapper is installed in the "C:\Program Files\BP Logix\Process Director"
folder as bpProxy.zip. This file contains a complete Visual Studio project creating both a .ASMX Web Ser-
vice, and a .DLL that has the web reference to the complex Web Service. This Web Service wrapper can be
deployed on any IIS server. It can also easily be deployed in the Process Director web site by copying the
.DLL to the "C:\Program Files\BP Logix\Process Director\website\bin" folder, and the .ASMX to the "C:\Pro-
gram Files\BP Logix\Process Director\website\custom\services" folder. After they are deployed, then can
be reference like any other web service.

For more information, refer to the Web Services topic.

62 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Classes
Custom programming in Process Director is performed by using a number of classes that are built into the
product SDK. Each class in the Process Director library contains all of the relevant Properties Methods and
Events, along with the required and optional parameters available for each method. Each of the classes
are listed in the Table of Contents displayed in the upper right corner of the page.

In most cases, each class is named after the specific Process Director object the class addresses. For
instance, the ProcessTaskUser class provides the Methods for manipulating the user assigned to the gen-
eric process task that's created by a running Process Timeline Activity. Similarly, the ProjectActivityUser
class contains the Methods for manipulating the user assigned to a specific Process Timeline Activity.

Exceptions to this Process Director object-based naming convention include:

l The bp class, which is the base class/namespace for all Process Director object classes. This class is uni-
versal, and the global bp variable provides the system context that is passed to many functions.

l The PDF class, which provides the methods for manipulating PDF documents, irrespective of the Pro-
cess Director object to which the PDF file is associated.

l The Excel class, which provides the methods for manipulating Microsoft Excel documents, again, irre-
spective of the Process Director object to which the file is associated.

Common Termination Reasons
The classes associated with Timeline Activities, Process Tasks, and Workflow Steps all have a common set
of termination reasons associated with every task or activity. The termination reason is set when the task
or activity is completed. A list of those classes would include:

l ProcessTask
l ProcessTaskUser
l ProjectActivity
l ProjectActivityUser
l Task
l WorkflowStep
l WorkflowStepUser

In the Process Director UI, text values are returned for the termination reasons. In Process Director data-
base tables, however, numeric values are stored for the termination reason in the nTermReason field of
the appropriate table. Thus, any records returned by database queries or views will display the numeric
value for the termination reason. The numeric values that may appear in the nTermReason field, along
with a description of each value, is provided in the Enumerators section of Database Guide's Table Defin-
itions topic.

bp Class
This object represents the SDK environment. All scripts will have access to this object. This class contains
many methods that implement utility routines (such as logging, data conversion, etc).

Methods
CheckForAdvance

Developer's Reference Guide | 63

Table Definitions.htm#Enumerators


BP Logix Inc
Process Director Documentation

This API will force the process engine to start the task advance check logic.

Parameters
WFINSTID: Optional Workflow Instance ID to check.

PRINSTID: Optional Timeline Instance ID to check.

WFID: Optional Workflow Definition ID to check.

PRID: Optional Timeline Definition ID to check.

Returns
None.

Example

bp.CheckForAdvance(ProcessInstanceID, null, null, null);

DateDiff (Static Method)
This API will determine the value of the difference between two dates.

Parameters
BP: The bp environment.

DateFrom: The origin (starting) date

DateTo: The termination (ending) date

DifferenceType: The type or units of difference to calculate (e.g. days, seconds, hours, years)

Returns
int: An integer representing the value of the difference between the two dates in the specified units.

Example

// Should return the value '4'
int days = bp.DateDiff(bp, DateTime.Parse("2022-03-05"),
    DateTime.Parse("2022-03-09"),
    BPLogix.WorkflowDirector.SDK.FormControls.DateDiffType.Days);

DBOpenComplete
This boolean property returns the status of the Process Director Database.

This can be used, for example, prior to making SDK calls that may access the database in the custom vars
file.

Parameters
none

Returns
boolean: This property returns true if the Process Director database has been successfully opened.

64 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

// Called after database initialized
public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Before we make SDK calls that access the database,
    // ensure DB has been opened
    if (bp.DBOpenComplete)

{
// Routine to perform if true

    }
}

FormatCurr (Static Method)
This API will return a string that is formatted as a currency.

Parameters
Any integer, double, decimal, or string

Returns
string: The object formatted in a currency (depending on locale)

Example

string TempString;

// Returns $100.00 (assuming USA locale)
TempString = bp.FormatCurr("100");

// Returns $10.10 (assuming USA locale)
TempString = bp.FormatCurr(10.1);

// Returns ""
TempString = bp.FormatCurr("Bad Value");

GetExcelRows
This API imports an Excel file into memory.

Parameters
ExcelPath: The server local path to the Excel file to import (specify this or ExcelDID).

ExcelDID: The ID of the document in the repository of the Excel file to import (specify this or ExcelPath).

SheetNumber: Zero-based sheet number to import (specify this or SheetName).

SheetName: Sheet name to import (specify this or SheetNumber).

Returns
list<bpExcelRow>: List of excel rows, or null if any error

Developer's Reference Guide | 65



BP Logix Inc
Process Director Documentation

Example

// This will import an Excel file
var Rows = bp.GetExcelRows( "C:\\db_import.xlsx", // The file path to import

null,  // null since we are using a file path
0,  // The first sheet in the workbook
null);  // Null since we are using SheetNumber

                                    // instead of SheetName
    if (Rows != null)

{
        foreach (var Row in Rows)

{
            foreach (var Col in Row.Columns)

{
bp.log0("Column value: " + Col.Value + ", Column type: "

                + Col.Type);
            }
        }
    }

GetTempDirectory
This API will return a string for a local temporary directory.

Returns
string: The name of a local file system temporary directory.

GetTempFilePath
This API will return a string for a temporary file name. It will use random digits to ensure the name is
unique.

Parameters
An optional string to prepend, and optional string to append

Returns
string: The string of a unique temporary file name and path.

Example

var TempFileName = bp.GetTempFilePath("begin","end");

GetCurrentProfileName
This API will return the string name of the currently selected profile for the current user. If there is no pro-
file selected, an empty string is returned.

Returns
string: The name of the current profile.

Example

bp.msg0("Current profile name: " + bp.GetCurrentProfileName());

HTMLEncode / HTMLDecode (Static Method)

66 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

These APIs will HTML-encode or HTML-decode a string.

Parameters
string: the value to convert

Returns
string: Appropriate encoded or decoded value

Example

// Returns "You &amp; me"
string test1 = bp.HTMLEncode("You & me");

// Returns "You & me"
string test2 = bp.HTMLDecode("You &amp; me");

HTTPRequest (Static Method)
This API will return the content of a specified web page.

Parameters
String URL: the URL to get

Returns
string: The HTML content of the web page.

Example

// This will load the web page from google.com into a string variable
string Result = bp.HTTPRequest("http://google.com");

HTTPRequestBytes (Static Method)
This API will return the bytes of a URL.

Parameters
String URL: the URL to get

Returns
byte array: URL contents

Example

// This will load the web page from google.com into a byte array variable
var Result = bp.HTTPRequestBytes("http://google.com");

HTTPPoke (Static Method)
This API will POST a URL.

Parameters
String URL: the URL to POST

Developer's Reference Guide | 67



BP Logix Inc
Process Director Documentation

Returns
N/A

Example

// This will POST a certain web page
bp.HTTPPoke("http://myserver.com/pagetopost.aspx");

HTTPRest (Static Method)
This API will POST a URL and return the XML response as a string

Parameters
string (URL): the URL to POST

string (XML Data): request data to POST (typically XML)

Returns
string: String variable containing response from page – typically in XML.

Example

// This will POST a request and get back the response
bp.HTTPRest("http://myserver.com/pagetopost.aspx","<API>1</API>");

ImportExcelDatabase (Static Method)
This API import an Excel file into a database. The sheet name will be used as the table name in the data-
base. Only sheets with data in cell A1 will be imported. Row 1 in Excel is used to specify the column name
in the database. You can optionally specify a column type for each column by separating the column
name from the type with a colon. You can use several database independent column types, such as"

l BP_STRING
l BP_DECIMAL
l BP_BOOL
l BP_INT
l BP_DATETIME

If you don't specify a type, the import process will guess at the type by looking at the first row of data.
Since the worksheet must have a header row to supply column names and optional data types, the first
data row will be row 2 of the worksheet.

Parameters
BP: The bp environment.

DestDB: The DataSource of the database to insert the Excel data.

ExcelPath: The server local path to the Excel file to import (specify this or ExcelDID).

ExcelDID: The ID of the document in the repository of the Excel file to import (specify this or ExcelPath).

TBLPrefix: Optional prefix to add to all imported tables.

DropFirst: Should the tables be dropped before importing?

68 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

DoCreate: Should the tables be created during the import?

DeleteFirst: Should the rows be deleted before the import?

Returns
Boolean: True if the operation succeeds.

Example

// This will import an Excel file into the database
bp.ImportExcelDatabase(bp,

dbConnection, // The database to insert the Excel data
     "C:\\db_import.xlsx", // The file path to import

null, // null since we are using a file path
     "USER_", // All tables created will have USER_ prefix

true, // drop existing tables first
true, // create all tables in database
false); // no need to delete rows –

                           // entire tables were dropped

INT | CURR | DOUBLE | DECIMAL | BPDATETIME (Static Method)
These APIs will convert a string into the appropriate data type.

Parameters
string: the value to convert

Returns
Appropriate data type depending on method.

Example

// returns 10
int TempInt = bp.Int("10");

// returns DateTime object
DateTime TempDate = bp.bpDateTime("1/1/2010");

ImportXML, ImportGlobalKViewXML, ImportProfilesXML
These functions import XML data from an XML file that Process Director exported. They mainly take the
same parameters, but interpret the XML in different ways:

l ImportXML: reads the XML data into a file in the content list.
l ImportGlobalKViewXML: reads the XML file into a global Knowledge View.
l ImportProfilesXML: reads the XML file into a profile definition.

The method declarations are as follows:
public bool ImportXML(string XMLPath,
                      string XMLDID,
                      byte[] XMLData,
                      string PID,
                      string ParentFolderID,
                      out List<string> RetMsg)

Developer's Reference Guide | 69



BP Logix Inc
Process Director Documentation

public bool ImportGlobalKViewXML(string XMLPath,
                                 string XMLDID,
                                 byte[] XMLData,
                                 out List<string> RetMsg)

public bool ImportProfilesXML(string XMLPath,
                              string XMLDID,
                              byte[] XMLData,
                              out List<string> RetMsg)

Parameters
string XMLPath: The file path of the XML file.

string XMLDID: The document ID of the XML file.

byte []XMLData: The raw XML data.

string PID: ID of the partition in which to import this XML document.

string ParentFolderID: The ID of the folder that this XML document will be imported into.

out List<string> RetMsg: A list of messages returned by this function.

Returns
boolean: This function returns true if, and only if, the import is successful.

Example

//imports XML File
List<string> returnMessages = new List<string>();
bool success = bp.ImportXML("someXMLFile.xml", "1234", "1234",

returnMessages);

log0 | log1 | log2 | log3 | log4 | log5 (Static Method)
These APIs will send a logging message to the bp.log file. This file can be viewed on disk, or you can use
the web based log viewer. log0 will always be sent to the log file. The other methods will be sent to log
file depending on the system log level setting.

The actual log will be written conditionally depending on the current logging level of the system. log0 will
always be written, log1 will only be written if the logging level is 1 or higher, etc.

More information about logging can be found in the System Administrator's Guide.

Parameters
Any formatted string or string variable.

Returns
None

70 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

bp.log0("This is a test");
bp.log0("Some sample data " + CurrentForm.FormControl("mydata").Text;
bp.log0(“Data1: {0} Data2: {1}”, 10, 20);

Login (Static Method)
This API will login as the specified user.

Parameters
BP: The bp environment.

User: The UserID to login.

Password: The password to login.

Returns
boolean: True if the operation succeeds.

Example

// This will login the user from the edit fields on a form
bp.Login(bp, CurrentForm.FormControl("userid"),
    CurrentForm.FormControl("password"));

RunKView
This API runs a Knowledge View and returns the found rows of Content items.

Parameters
KVID: The Knowledge View ID to run.

Filter: List<NameValue> - Optional list of input filter to the Knowledge View. Use {var:PARM} in the Know-
ledge View definition to access the filter fields.

StartFID: Optional Folder ID to filter.

StartCATID: Optional Category ID to filter.

Output: List<KViewResult> - List of resultant rows

Returns
boolean: True if the operation succeeds.

Example
In order for the RunKView method to execute properly, the Knowledge View definition must have the
appropriate system variable set as a filter. In the case of the example below, the Knowledge View must
use the value of "Filter1" set as a filter. For instance, let's say you wish to find the value of a filter named
"Filter1" in a Form field. In that case, your filter in the Knowledge View definition might look something
like this:

Developer's Reference Guide | 71



BP Logix Inc
Process Director Documentation

The RunKView method will pass the filter value in the Filter parameter, which is identified by the "infilter"
variable in the code snippet below.

// Run a Knowledge View, then log the results
var infilter = new List<NameValue>();
infilter.Add(new NameValue("Filter1","Value"));
List<bp.KViewResult> rows;
var res = bp.RunKView(CurrentForm.FormControl("kview_picker"), infilter,

null, null, out rows);
if (res)
{
    foreach (var row in rows)

{
bp.log0("ID: " + row.ID + " type: " + row.ObjectType);

        foreach (var col in row.Columns)
{

bp.log0("Column Name: " + col.Name + " Value: " + col.Value);
        }
    }
}

SendEmail (Static Method)
This API will send an email. This is an overloaded method, and the method declarations are as follows:
public static bool SendEmail (bp BP,
                         string pFORMID,
                         string pFORMINSTID,
                         List<ContentObject> pAttachments,
                         string pSubject,
                         string pToEmailUID,
                         string pFromEmailAddress

public static bool SendEmail (bp BP,
                          string pFORMID,
                          string pFORMINSTID,
                          List<ContentObject> pAttachments,
                          string pSubject,
                          string pToEmailAddress,
                          string pToEmailDisplay,
                          string pFromEmailAddress)

Parameters
BP: The bp environment.

FORMID: The form ID to use as the email template.

FORMINSTID: The ID of the form instance to be used for variable substation in the email. Specify “null” if
you don't wish to reference a form instance.

Attachments: A list of ContentObject attachments to add to the email

Subject: The subject of the outgoing email

ToEmailUID: The UID of the destination

72 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

FormEmailAddress: The email address of the sender of the email

Returns
boolean: True if the operation succeeds.

Example

bp.SendEmail(bp,
oMyFORM.ID,                // The email template
oMyFORMINST.ID,            // The form instance
null,                      // list of attachments

    "My Email Subject",        // Subject
newuser.UID,               // The ID of the “to” for the email

    “from_email@company.com”); // The “from” email address/

Business Value Class
This object represents a Business Value object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ID String The ID of the Business Value

Name String The name of the Business Value

Text String The Text of a Business Value property

Value Data type spe-
cified in the data
source

The Value of a Business Value property

Values List object A list object containing all of the Values returned by a Busi-
ness Value

Number Decimal If a Business Value property returns a numerical value, the
Number property casts the value as a decimal number. If
the value isn't a number, the Number's property will return
"0".

Numbers Decimal If a Business Value property returns a numerical value, Num-
bers property will return a list object containing all of the
values, cast as decimals numbers. If the the value isn't a
number, the Number's property will return "0".

DateTime DateTime If a Business Value property returns a DateTime value the
DateTime property will return the value cast as a DateTime
object.

DateTimes List Object If a Business Value property returns a DateTime value the
DateTimes property will return a list object with all the val-
ues cast as a DateTime object.

Developer's Reference Guide | 73



BP Logix Inc
Process Director Documentation

Methods
GetBusinessValueByID
This API will return the Business Value object specified by the Business Value ID.

Parameters
bp: The Process Director environment.

pBVID: The string ID of the Business Value.

Returns
object: A Business Value object.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "BusinessValueID");

GetBusinessValueByName
This API will return the Business Value object specified by the Business Value's Name.

Parameters
bp: The Process Director environment.

PID: The string PartitionID of the partition in which the Business Value is located.

pName: The name of the Business Value.

Optional Parameters
pGroup: The Group Name configured for the Business Value. This is the group name specified in the Group
in Value Picker property on the Business Value definition's Options tab.

Returns
object: A Business Value object.

Example

var myBV = BusinessValue.GetBusinessValueByName(bp, "PartitionID", "BVName");

Parameters
This API will return a list containing all of the names of the Parameters for a Business Value.

Parameters
None

Returns
list <string>: List of parameters.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "BusinessValueID");
var myParams = myBV.Parameters();

74 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Properties
This API will return a list containing all the properties of a Business Value.

Parameters
None

Returns
list <object>: List of BusinessValueProperty objects.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "BusinessValueID");
var myProps = myBV.Properties();

Property
This API will return a specified Business Value property.

Parameters
pPropName: The string name of the Property to return.

Returns
object: A Business Value Property object.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "BusinessValueID");
BusinessValueProperty myProp = myBV.Property("PropertyName");
string val = myProp.Value;

SetParameter
This API will set a Parameter value for a Business Value.

Parameters
pParamName: The string name of the Parameter to set.

pParamValue: The string value to set for the Parameter.

Returns
None

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "BusinessValueID");
myBV.SetParameter("ParamName", "ParamValue");

TextList
This API will return a list containing all of the Display Strings for a Business Value Property, as opposed to
the Property values, those these will usually be the same. This is most often useful for filling dropdown
controls that use different display and value fields.

Developer's Reference Guide | 75



BP Logix Inc
Process Director Documentation

Parameters
None

Returns
list <string>: List of Display Strings.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "BusinessValueID");
BusinessValueProperty myProp = myBV.Property("PropertyName");
List<String> val = myProp.TextList;

Case Class
This class represents a Case object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Group String The Group Name configured for the Case.

Methods
AddToCase
This API will add a content object to a case instance.

Parameters
pObj: The content object to add to the case.

Returns
boolean: Returns"true" if the operation succeeds

Example

var newCase = Case.CreateCase(bp, "CASEID");
newCase.AddToCase(CurrentForm);

CreateCase
This API will create a new instance of a Case object.

Parameters
bp: The Process Director environment.

pCASEID: The CaseID of the Case definition.

Returns
object: A Case Object.

Example

var newCase = Case.CreateCase(bp, "CASEID");

76 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

GetCaseByCASEID
This API will return a specified Case object.

Parameters
bp: The Process Director environment.

pCASEID: The CaseID of the Case definition.

Returns
object: A Case Object.

Example

var myCase = Case.GetCaseByCASEID(bp, "CASEID");

GetCaseByCASEINSTID
This API will return a specified Case object.

Parameters
bp: The Process Director environment.

pCASEINSTID: The CaseInstanceID of the Case instance.

Returns
object: A Case Object.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");

GetCaseProperties
This API will return a List object containing all of the properties for a Case.

Parameters
None

Returns
list <object>: A list of Case property objects.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
List<NameValueEx> myVals = myCase.GetCaseProperties();
// Get the first value from the list
string val = myVals[0].Value;

GetPropertyText
This API will return the specified property of a Case object. This API will return the value from any case
property type, including number or DateTime values, cast as a string.

Developer's Reference Guide | 77



BP Logix Inc
Process Director Documentation

Parameters
pPropName: The string name of the property to return.

Returns
string: The case property value.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
string myVal = myCase.GetPropertyText("PropertyName");

GetPropertyNumber
This API will return the specified property of a Case object, if the property is a numeric value. If the prop-
erty is a string or a DateTime, the API will return "0".

Parameters
pPropName: The string name of the property to return.

Returns
decimal: A decimal number containing the case property value.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
string myVal = myCase.GetPropertyNumber("PropertyName");

GetPropertyDateTime
This API will return the specified property of a Case object, if the property is a DateTime value. If the prop-
erty is a string or a number, the API will return null.

Parameters
pPropName: The string name of the property to return.

Returns
object: A DateTime object containing the case property value.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
string myVal = myCase.GetPropertyDateTime("PropertyName");

RecalcCaseInstanceName
This API will recalculate the name of the case instance to update any changes to the data used in the
instance name, such as form field or case variables.

Parameters
None

78 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
None

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
myCase.RecalcCaseInstanceName();

SetPropertyText
This API will set the specified property of a Case object. If the case property is a numeric or DateTime
value, Process Director will cast the string to the correct data type.

Parameters
pPropName: The string name of the property to return.

Returns
None

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
string myVal = "Value";
myCase.SetPropertyText("PropertyName") = myVal;

SetPropertyNumber
This API will set the specified property of a Case object, if the case property is a numeric value. Otherwise,
the value will be set to null.

Parameters
pPropName: The string name of the property to return.

Returns
None

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
int myVal = 1;
myCase.SetPropertyNumber("PropertyName") = myVal;

SetPropertyDateTime
This API will set the specified property of a Case object, if the case property is a DateTime value. Other-
wise, the value will be set to null.

Parameters
pPropName: The string name of the property to return.

Returns
None

Developer's Reference Guide | 79



BP Logix Inc
Process Director Documentation

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
datetime myDate = new DateTime(2023, 1, 18);
myCase.SetPropertyDateTime("PropertyName") = myDate;

ConditionSet Class
This object represents a Condition Set used for a Process Director object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ID String The string ID of the ConditionSet.

In addition to Properties, Condition Sets use the SystemVariableContext object to specify the various con-
text properties for the Condition Set. Please see the SystemVariableContext topic for more information.
Additionally, the Condition struct object is required as a parameter for some methods of this class. The
Condition struct is documented below.

Methods
Copy
This API will create a copy of a ConditionSet. This is an overloaded method with the following possible
declarations:
public ConditionSet Copy()

public ConditionSet Copy(IEnumerable<Condition> cConditions)

public ConditionSet Copy(ContentObject oContainer)

public ConditionSet Copy (ContentObject oContainer, IEnumerable<Condition>
cConditions)

Parameters
cConditions: A iEnumerable Condition struct object that defines the conditions included in the Condi-
tionSet.

oContainer: A ContentList object.

Returns
Rule object: Will return null if the ConditionSet isn't found.

Example
See the general Code Sample below.

Evaluate
This API will call the evaluation of the ConditionSet, returning the appropriate data. This is an overloaded
method with the following possible declarations:
public bool Evaluate(SystemVariableContextReadonly Context)

80 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

public bool Evaluate(SysVarClass.IContextReadonly Context)

Parameters
Context: A SystemVariableContext object containing the context settings for the Condition Set.

Returns
string: The result of the Condition Set's evaluation.

Example
See the general Code Sample below.

Update
This API will update a ConditionSet.

Parameters
cConditions: A iEnumerable Condition struct object that defines the conditions included in the Condi-
tionSet.

Returns
Rule object: Will return null if the ConditionSet isn't found.

Example
See the general Code Sample below.

Condition Struct
The Condition Struct object is an IEnumerable object that stores a condition or set of conditions.

Properties
These properties can be enumerated via a Get, but are Set privately, and can't be Set in script.

PROPERTY NAME DESCRIPTION

Left A SystemVariable object that defines the Left side of the condition.

Right A SystemVariable object that defines the Right side of the condition.

Type The type of comparison to make between the left and right side of the Condi-
tion.

Methods
Copy
This API will create a copy of a Condition.

Parameters
None

Returns
Condition object: A Clone of the specified Condition object.

Developer's Reference Guide | 81



BP Logix Inc
Process Director Documentation

Example
See the general Code Sample below.

Code Sample
A user can't instantiate a ConditionSet (or a Condition) object. Users will only interact with these objects
through the “ReturnValues” property of a Business Rule. The following code evaluates a Business Rule,
and then manually evaluates its return values, returning the first match:

var context = new SystemVariableContext {Form = BaseForm};
var sv = new SystemVariable(bp.eSysVar.FormField,
    new DataItem(FormEnums.eDataType.String),

{String = "UserPicker1"});
sv.Parameters["format"] = "uid";
var sEval = sv.Evaluate(context);

var rule = Rule.GetRuleByRULEID(bp, "RULEID");
var resultRule = rule.Evaluate(context);

ReturnFirst(rule, context);

// Return the First matching value in a Rule
static string ReturnFirst(Rule rule, SystemVariableContext context)
{
    foreach(var rv in rule.ReturnValues)

{
// The Copy below function is unnecessary, and added only for illus-

tration.
        // In actual use, the line below would simply be:
        // var cs = rv.Value();
        var cs = rv.Value.Copy();
        if (cs.Evaluate(context))
         return rv.Key.Evaluate(context);
    }
    return "";
}

ContentObject Class
This object represents the base class for all content objects (documents, Forms, Process Timelines, etc)
stored in Process Director. All properties, methods, and events of this base class are available to every con-
tent object derived from this class.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ContentPath String The full path including folders for this object

CreateTime DateTime The date/time the object was created

CreateUID String The UID of the user that created the object

Description String The description of this object

GroupName String The optional group name that this object is stored in (e.g.
for Form attachments)

82 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

Icon String The Icon number of this object

ID String The ID of this object

Name String The name of this object

Parent_ID String The optional ID of the parent of this object

PID String The internal Partition ID

Size Integer The size of this object, in Kilobytes.

Type String The description of this object

UpdateTime DateTime The date/time the object was last updated

UpdateUID String The UID of the user that last updated the object

Version Integer The version of the object. The version number is incre-
mented for documents every time a document is checked in.
For forms, the version number is incremented each time a
user saves changes on the form.

PermObject Class
Since each object in the ContentObject Class has permissions that can be applied to the object, the Per-
mObject class is used by the various permissions methods, such as SetPermissions, or GetPermissionsto
list, get, set, and replicate permissions.
Properties

PROPERTY NAME DESCRIPTION

PermID The Permissions ID GUID string for the permission.

OID The Object ID GUID string for the object to which the permission is applied.

GrantID The Grant ID GUID string for the permissions grant. This is the user or group ID
for the user or group to whom the grant is given.

PID The Partition ID GUID string for the partition in which the object resides.

GrantType The Grant Type of the permission. This is an object value that enables you to
set the object type to User or Group.

fRead A boolean value to determine whether or not to grant read permission to the
Content Object, i.e., an Object Definition.

fWrite A boolean value to determine whether or not to grant write permission to the
Content Object, i.e., an Object Definition.

fDelete A boolean value to determine whether or not to grant delete permission to the
Content Object, i.e., an Object Definition.

fExecute A boolean value to determine whether or not to grant execute permission to
the Content Object, i.e., an Object Definition.

Developer's Reference Guide | 83



BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION

fRead2 A boolean value to determine whether or not to grant read permission to the
child objects of a Content Object, i.e., an Object Instance.

fWrite2 A boolean value to determine whether or not to grant write permission to the
child objects of a Content Object, i.e., an Object Instance.

fDelete2 A boolean value to determine whether or not to grant delete permission to the
child objects of a Content Object, i.e., an Object Instance.

The values below are used only for Deny permissions. This won't be applicable to most install-
ations. We strongly recommend that, due to system overhead, Deny permissions not be used
unless necessary.

fReadEx A boolean value to determine whether or not to deny read permission to the
Content Object, i.e., an Object Definition.

fWriteEx A boolean value to determine whether or not to deny write permission to the
Content Object, i.e., an Object Definition.

fDeleteEx A boolean value to determine whether or not to deny delete permission to the
Content Object, i.e., an Object Definition.

fExecuteEx A boolean value to determine whether or not to deny execute permission to the
Content Object, i.e., an Object Definition.

fReadEx2 A boolean value to determine whether or not to deny read permission to the
child objects of a Content Object, i.e., an Object Instance.

fWriteEx2 A boolean value to determine whether or not to denywrite permission to the
child objects of a Content Object, i.e., an Object Instance.

fDeleteEx2 A boolean value to determine whether or not to deny delete permission to the
child objects of a Content Object, i.e., an Object Instance.

Methods
Add
This API will add an object as child to the current object. This is an overloaded method, with the following
possible method declarations:
public virtual bool Add(string pID)

public virtual bool Add(string pID, string pGroup)

public virtual bool Add(ContentObject pObj)

public virtual bool Add(ContentObject pObj, string pGroup)

Parameters
ContentObject: The ContentObject to add to this object.

pGroup: Optionally the group name to add into.

84 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

pID: The ID of the object to add.

Returns
boolean: True if the operation succeeds.

Example

CurrentForm.Add(Form.Instantiate(bp, "ObjectID"));

AddDocumentFromFS
This API will create a new document under an object from the local file system. This is an overloaded
method with the following possible declarations:
public Document AddDocumentFromFS(string Path)

public Document AddDocumentFromFS(string Path, string Name)

public Document AddDocumentFromFS(Stream Stream, string Name)

public Document AddDocumentFromFS (Stream Stream, string Name,
                                  string DocName)

Parameters
Path: The folder or full path to the local file.

Name: Optionally the file name in the path.

Stream: A FileSystem Stream object to add as a document

Returns
ContentObject: The new content object or null if the add fails.

Example

var oObject = Project.GetProjectbyPRID(bp, "PRID");
oObject.AddDocumentFromFS("c:\\documents\\doc1.doc");

AddDocumentFromBytes
This API will create a new document under an object from a byte array. This is an overloaded method with
the following possible declarations:
public Document AddDocumentFromBytes (string Name,
                                     byte[] Bytes)

public Document AddDocumentFromBytes (string Name,
                                     byte [] Bytes,
                                     bool Replace)

public Document AddDocumentFromBytes (string Name,
                                     byte [] Bytes,
                                     bool Replace,

                                     bool SkipAutoWfStart)

Parameters
Name: Name of the new document.

Developer's Reference Guide | 85



BP Logix Inc
Process Director Documentation

Bytes: The array of bytes used to set the document contents.

Replace: Boolean value to direct if the document should replace another

SkipAutoWfStart: Boolean to determine whether to automatically start a process

Returns
ContentObject: The new content object or null if the add fails.

Example

byte[] DocumentData;
var oObject = Project.GetProjectbyPRID(bp, "PRID");
// Set document data from reading from file, web service call, etc
// DocumentData = ...
oObject.AddDocumentFromBytes("My Doc.doc", DocumentData);

AddObjectMap
This API will add a shortcut to the object into the destination. This is an overloaded method with the fol-
lowing possible declarations:
public bool AddObjectMap(string DestinationID, ObjectType DestinationObjectType)

public bool AddObjectMap(string DestinationID)

public bool AddObjectMap(ContentObject DestinationObj)

Parameters
ContentObject: The Content object to add a shortcut into.

DestinationID: The ID of the Content Object to add a shortcut into.

DestinationObjectType: The Type of the Content Object to add a shortcut into.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Document.GetDocumentbyDID(bp, "DID");
oObject.AddObjectMap("1234", ObjectType.Folder);

AddPending
This API will Add an object to the "Pending" queue, meaning that it will attach the object to the first Pro-
cess which starts on it.

This is an overloaded method with the following possible declarations:
public bool AddPending(ContentObject pObj)

public bool AddPending(ContentObject pObj, string pGroup)

Parameters
pObj: The Content object to add to the pending queue.

pGroup: The Group Name of the Object.

86 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
boolean: True if the operation succeeds.

Example

// Set the Process and content object
var oProcess = Project.GetProcessByID(bp, "PRID");
var oObject = Form.GetFormByFORMID("FORMID");
//Add the object to the Pending Queue
oProcess.AddPending(oObject);

AssignCategory
This API will set the Meta Data category for an object. This is an overloaded method with the following
possible declarations:

public bool AssignCategory(string Category)

public static bool AssignCategory(bp BP, string ID, string Category)

Parameters
BP: The BP Logix environment class.

ID: The string ID of the Content Object.

Category: The string name of the category to which the object should be assigned.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.AssignCategory("CategoryName");

ConvertSysVarsInString
This API will convert system variables in a given string. This is an overloaded method with the following
possible declarations:
public virtual string ConvertSysVarsInString(string pString)

public virtual string ConvertSysVarsInString (string pString,
                         SysVarClass.Context pContext)

public virtual string ConvertSysVarsInString (string pString,
                         SysVarClass.IContextReadonly pContext)

Parameters
pString: The string containing optional SysVars to convert.

pContext: A System Variable Context object identifying the context of the variables

Returns
string: The converted string

Developer's Reference Guide | 87



BP Logix Inc
Process Director Documentation

Example

var oObject = Form.GetFormByFORMID("FORMID");
var NewString = oObject.ConvertSysVarsInString("Convert {EMBEDDED_SYSVAR}");

CopyObject
This API will copy the Content Object to a destination. This is an overloaded method with the following
possible declarations:
public string CopyObject (string DestinationID,
                         ObjectType DestinationObjectType)

public string CopyObject(string DestinationID)

public string CopyObject(string DestinationID, string GroupName)

Parameters
DestinationID: The ID of the Content Object to copy into.

DestinationObjectType: The Type of the Content Object to copy into. (optional parameter)

GroupName: The Group name of the object

Returns
string: The ID of the new object, or “” if the copy failed.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.CopyObject("DestinationID", "GroupName");

DeleteObject
This API will delete the Content Object.

Parameters
none

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.DeleteObject();

DeleteObjectAndChildren
This API call will delete a Content List instance object and all of its child objects. For instance, you can
delete a form of process instance as well as all document attachments for those instances.

Parameters
none

88 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.DeleteObjectAndChildren();

GetAttribute
This API will get a specific attribute from the object’s meta data. This is an overloaded method with the
following possible declarations:
public DataItem GetAttribute(string Category, string Attribute)

public static DataItem GetAttribute (bp BP, string ID, string Category,
                                    string Attribute)

public DataItem GetAttribute(string pATTID)

public static DataItem GetAttribute(bp BP, string ID, string ATTID)

public DataItem GetAttribute(MetaCategory pCat, string Attribute)

public static DataItem GetAttribute (bp BP, string ID, MetaCategory Cat,

                                    string Attribute)

Parameters
Category: The Category of the Attribute to retrieve

Attribute: The Attribute name to retrieve

BP: The Process Director BP Object

ID: The ID of the attribute to retrieve

pCat: The Meta Data Category object

Cat: The Meta Data Category object of the Attribute re retrieve

ATTID: The Attribute Id of the Attribute to retrieve

Returns
DataItem: The data corresponding to the Attribute

Example

var oObject = Project.GetProjectbyPRID(bp, "PRID");
var dataAtt = oObject.GetAttribute("Category 1.Category 2",
    "Attribute Name");
var val = dataAtt.String;

GetAttributes
This API will get a list of attributes from the object’s meta data. This is an overloaded method with the fol-
lowing possible declarations:
public List<NameValueEx> GetAttributes()

public static List<NameValueEx> GetAttributes(bp BP, string ID)

Developer's Reference Guide | 89



BP Logix Inc
Process Director Documentation

public List<NameValueEx> GetAttributes(MetaCategory pCat)

public static List<NameValueEx> GetAttributes (bp BP, string ID,
                                              MetaCategory pCat)

public List<NameValueEx> GetAttributes(string pCat)

Parameters
BP: The Process Director BP Object

ID: The ID of the attribute to retrieve

pCat: The Meta Data Category object

Returns
list: The Name-Value pairs of each Attribute

Example

var oObject = Form.GetFormByFORMID("FORMID");
var atts = oObject.GetAttributes("Category 1");
foreach(var att in atts)
{
    var name = att.Name;
    var val = att.Value;
}

GetChildren
This API will create a list of all the children for the content object. This is an overloaded method with the
following possible declarations:

Gets All Children:
public virtual List<ContentObject> GetChildren()

public static List<ContentObject> GetChildren(bp BP, string ParentID)

Gets children of specified eMapType:
public virtual List<ContentObject> GetChildren(bp.eMapType MapType)

public static List<ContentObject> GetChildren (bp BP,
                                              string ParentID,
                                              bp.eMapType MapType)

Gets children of specified ObjectType:
public virtual List<ContentObject> GetChildren(ObjectType ObjectType)

public static List<ContentObject> GetChildren (bp BP, string ParentID,
                                              ObjectType ObjectType)

Gets children with a specified groupname:
public virtual List<ContentObject> GetChildren(string GroupName)

public static List<ContentObject> GetChildren (bp BP, string ParentID,
                                              string GroupName)

90 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

public virtual List<ContentObject> GetChildren (ObjectType ObjectType,
                                               string GroupName)

Gets children of specified ObjectType and eMapType:
public virtual List<ContentObject> GetChildren (ObjectType ObjectType,
                                               bp.eMapType MapType,

string GroupName)

public static List<ContentObject> GetChildren (bp BP, string ParentID,
                                              ObjectType ObjectType,
                                              bp.eMapType MapType,
                                              string GroupName)

Parameters
ObjectType: The optional type of objects to filter.

MapType: The optional map type of the objects to filter.

GroupName: The optional group name of the objects to filter.

ParentID: The optional ID of the parent object to filter

Returns
list<ContentObject>: A List of the ContentObject type.

Example

var childList = CurrentProject.GetChildren(ObjectType.Document);

GetFileType
This API will return the file type for documents and Forms.

Parameters
none

Returns
string: The file extension (e.g. “docx”, “ascx”) of the document or Form.

Example

var oObject = Document.GetDocumentbyDID("DID");
var FileType = oObject.GetFileType();

GetObjectByID (Static Method)
This API will get a content object from the specified ID.

Parameters
BP: The Process Director BP Object

ID: The ID of the object to retrieve

Developer's Reference Guide | 91



BP Logix Inc
Process Director Documentation

Returns
ContentObject: Will return null if object isn't found.

Example

// Normally not used directly
var oObject = ContentObject.GetObjectByID(bp, "OID");

GetObjectByPathName (Static Method)
This API will get an object by its path.

Parameters
BP: The Process Director BP Object.

PartitionID: The Partition ID or name.

PathName: The complete path to the object to return.

Returns
ContentObject: The actual object or null if not found.

Example

// Get the Process Timeline named “My Timeline” in the folder named "My Project"
// located in the "Partition1" partition.
var myTimeline = ContentObject.GetObjectByPathName(bp, "Partition1",
    "/My Project/My Timeline");

GetPermissions
This API will return the permissions of the object. This is an overloaded method with the following pos-
sible declarations:
public static List<PermObject> GetPermissions(bp BP, string ID)

public List<PermObject> GetPermissions()

Parameters
BP: The Process Director BP Object.

ID: The ID of the object from which to retrieve permissions.

Returns
List<PermObject>: The list of permission records for the selected object.

Example

var oObject = Form.GetFormByFORMID("FORMID");
var PermList = oObject.GetPermissions();

GetProcess
This API will return the the process associated with a content object. This method is useful when you
know the ID of a content object, such as a Form, but don't know the process with which the form is asso-
ciated. This method will return either a Workflow or Project (Process Timeline) object, or null if the string

92 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

ID of the content object isn't found. This is an overloaded method with the following possible declar-
ations:
public Process GetProcess()

public Process GetProcess(string idProc)

Parameters
idProc: The string ID of the content object for which you wish to return the associated process.

Returns
Workflow or Project (Process Timeline) object: The process object associated with the idProc used as the
input parameter.

Example
If a content object is ised in a single process, you can return the process without passing any parameters.
In the sample below, a form is identified, then used to return the process associated with the form:

var form = Form.GetFormByFORMINSTID(bp, "FORMINSTID");
var proc = form.GetProcess();

If your content object is used in multiple processes, you'll need to pass the ProcessID as a parameter:

var form = Form.GetFormByFORMINSTID(bp, "FORMINSTID");
var proc = form.GetProcess("PRID");

IsCatAssigned
This API checks to see if an object has been assigned to a given Meta Data category. This is an overloaded
method with the following possible declarations:
public bool IsCatAssigned(string Category)

public static bool IsCatAssigned(bp BP, string ID, string Category)

Parameters
BP: The Process Director BP Object.

ID: The ID of the ContentObject to check.

Category: The string name of the category to check.

Returns
boolean: True if the object is assigned to the given Meta Data Category.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.IsCatAssigned("CategoryName");

MoveObject
This API will move the Content Object to a new destination. This is an overloaded method with the fol-
lowing possible declarations:
public bool MoveObject(string DestinationID, ObjectType DestinationObjectType)

Developer's Reference Guide | 93



BP Logix Inc
Process Director Documentation

public bool MoveObject(string DestinationID)

public bool MoveObject(ContentObject oDest)

Parameters
DestinationID: The ID of the Content Object to move into.

DestinationObjectType: The Type of the Content Object to move into. (optional parameter)

oDest: The Content Object of the destination to which to move the object

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.MoveObject("1234");

RemoveCategory
This API removes an object from a given Meta Data category. This is an overloaded method with the fol-
lowing possible declarations:
public bool RemoveCategory(string Category)

public static bool RemoveCategory(bp BP, string ID, string Category)

Parameters
BP: The Process Director BP Object.

ID: The ID of the ContentObject to check.

Category: The string name of the category to check.

Returns
boolean: True if the method succeeds.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.RemoveCategory("CategoryName");

RemoveObjectFromParent
This API will remove the Content Object from its parent. This is an overloaded method with the following
possible declarations:

public bool RemoveObjectFromParent()[Deprecated]
public bool RemoveObjectFromParent(ContentObject pParent)

public bool RemoveObjectFromParent(ContentObject pParent, bp.eMapType pMapType)

public bool RemoveObjectFromParent(string pParentID)

public bool RemoveObjectFromParent(string pParentID, bp.eMapType pMapType)

Parameters
pParent: The parent ContentObject.

94 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

eMapType : The relationship Map Type between the child and parent objects.

pParentID: The string ID of the parent object.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMINSTID(bp, "FORMINSTID");
oObject.RemoveObjectFromParent(pParentObject);

RemovePermissions
This API will remove all permissions for the object. Typically you'll then add permissions with the SetPer-
missions API. This is an overloaded method with the following possible declarations:
public bool RemovePermissions()

public static bool RemovePermissions(bp BP, string ID)

public bool RemovePermissions(Group group)

public bool RemovePermissions(User user)

public bool RemovePermissions(string ID)

Parameters
BP: The Process Director BP Object

ID: The ID of the object from which to remove permissions.

Group: The Group object from which to remove permissions.

User: The user object from which to remove permissions.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.RemovePermissions(); // Remove all permissions to this object

ReplicatePermsToChildren
This API will replicate all permissions for the object to all children of the object. This is an overloaded
method with the following possible declarations:
public bool ReplicatePermsToChildren()

public static bool ReplicatePermsToChildren(bp BP, string ID)

Parameters
BP: The Process Director BP Object

ID: The ID of the object from which to remove permissions.

Developer's Reference Guide | 95



BP Logix Inc
Process Director Documentation

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.ReplicatePermsToChildren();

ReplicatePermsToChildrenAndForms
This API will replicate all permissions for the object to all children of the object. Additionally, if any of the
children are form instances, the permissions will be replicated to their children as well. This is an over-
loaded method with the following possible declarations:
public bool ReplicatePermsToChildrenAndForms()

public static bool ReplicatePermsToChildrenAndForms(bp BP, string ID)

Parameters
BP: The Process Director BP Object

ID: The ID of the object from which to remove permissions.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.ReplicatePermsToChildrenAndForms();

SetAttribute
This API will set a specific attribute in the object’s Meta Data. This is an overloaded method with the fol-
lowing possible declarations:
public bool SetAttribute(string Category, string Attribute, string Value)

public bool SetAttribute(string Category, string Attribute, DataItem Value)

public static bool SetAttribute (bp BP, string ID, string Category,
                                string Attribute,

string Value)

public static bool SetAttribute (bp BP, string ID, string Category,
                                string Attribute,
                                DataItem Value)

public static bool SetAttribute(bp BP, string ID, string ATTID, string Value)

public static bool SetAttribute(bp BP, string ID, string ATTID, DataItem Value)

Parameters
BP: The Process Director BP Object

ID: The ID of the object from which to remove permissions.

Category: The Category of the Attribute to set.

96 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Attribute: The Attribute name to set.

Value: The string or DataItem to assign to the Attribute.

ATTID: The ID of the attribute from which to remove permissions.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.SetAttribute("Category 1.Category 2", "Attribute Name", "1");

SetAttributes
This API will set a list of attributes in the object’s Meta Data. This is an overloaded method with the fol-
lowing possible declarations:
public bool SetAttributes(List<NameValue> Attributes)

public static bool SetAttributes (bp BP, string ID,
                                 List<NameValue> Attributes)

public bool SetAttributes(List<NameValueEx> Attributes)

public static bool SetAttributes (bp BP, string ID,

                                 List<NameValueEx> Attributes)

Parameters
BP: The Process Director BP Object

ID: The ID of the object from which to remove permissions.

Attributes: A list of NameValueEx objects where the Name specifies the Category.Attribute name, and
the Value specifies the value to set.

Returns
boolean: True if the operation succeeds.

Example

MetaCategory myCat = GetCategory(bp, "PID", "Category 1");
var oObject = Form.GetFormByFORMID(bp, "FORMID");
var atts = myCat.GetAttributes("Category 1.Category 1A");
foreach(var att in atts)
{
    var name = att.Name;
    var val = att.Value;
}
oObject.SetAttributes(atts);

SetExternalAttribute
This API will set a Meta Data attribute for an object based on the external name. This is an overloaded
method with the following possible declarations:

public bool SetExternalAttribute(string ExternalName, string Value)

Developer's Reference Guide | 97



BP Logix Inc
Process Director Documentation

public static bool SetExternalAttribute (bp BP, string ID,
                                        string ExternalName,
                                        string Value)

Parameters
BP: The Process Director BP Object

ID: The ID of the object to which to set the attribute.

ExternalName: The string value for the external name to use for the attribute name.

Value: The string value of the Attribute to set.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.SetExternalAttribute("ExternalName", "ValueToSet");

SetExternalAttributes
This API will set Meta Data attributes for an object based on a list of external names. This is an overloaded
method with the following possible declarations:
public bool SetExternalAttributes(List<NameValue> MetaData)

public static bool SetExternalAttributes (bp BP, string ID,
                                         List<NameValue> MetaData)

Parameters
BP: The Process Director BP Object

ID: The ID of the object to which to set the attributes.

MetaData: A list object consisting of Name/Value pairs.

Returns
boolean: True if the operation succeeds.

Example

List<NameValue> atts = new List<NameValue>();
atts.Add("Attr1");
atts.Add("Attr2");
var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.SetExternalAttributes(atts);

SetGroupName
This API will set the group that the object is in.

Parameters
GroupName: The group for this object.

98 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.SetGroupName("My Group");

SetMetaData
This API will set the Meta Data categories and attributes for an object using an XML string. This is an over-
loaded method with the following possible declarations:
public bool SetMetaData(string MetaData)

public static bool SetMetaData(bp BP, string ID, string XML_Data)

Parameters
MetaData: The XML String containing the Meta Data information.

BP: The BP Logix environment.

ID: The ID of the object for which the Meta Data is to be set..

XML_Data: The XML String containing the Meta Data information.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");

//Make the XML String for the Meta Data
StringBuilder sb = new StringBuilder();
sb.Append("<?xml version=\"1.0\" encoding=\"utf-8\"?>");
sb.Append("<META_DATA xmlns:xsi=");
sb.Append("\"http://www.w3.org/2001/XMLSchema-instance\"");
sb.Append("xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\">\"");
sb.Append("<INPUT_META_DATA>");
sb.Append("<ATTRIB_NAME>Cat 1.Cat 2.Attrib 1</ATTRIB_NAME>");
sb.Append("<META_VALUE>Value 1</META_VALUE>");
sb.Append("</INPUT_META_DATA>");
sb.Append("<INPUT_META_DATA>");
sb.Append("<ATTRIB_NAME>Cat 1.Cat 2.Attrib 2</ATTRIB_NAME>");
sb.Append("<META_VALUE>Value 2</META_VALUE>");
sb.Append("</INPUT_META_DATA>");
sb.Append("</META_DATA>");

//Set Meta Data
oObject.SetMetaData(sb.ToString());

SetPermissions
This API will set permissions available on the object for a specific User or Group of Users. This is an over-
loaded method with the following possible declarations:
public bool SetPermissions (User GrantUser, bool PermView, bool PermModify,
                           bool PermDelete, bool PermRun)

Developer's Reference Guide | 99



BP Logix Inc
Process Director Documentation

public bool SetPermissions (Group GrantGroup, bool PermView, bool PermModify,
                           bool PermDelete, bool PermRun)

public bool SetPermissions (string GrantID, ObjectType GrantType,
                           bool PermView, bool PermModify,
                           bool PermDelete, bool PermRun)

public bool SetPermissions (string Partition, string GrantID,
ObjectType GrantType, bool PermView,

                           bool PermModify, bool PermDelete, bool PermRun)

public static bool SetPermissions (bp BP, string ID, string PID,
                                  string GrantID,
                                  ObjectType GrantType,
                                  bool PermView,
                                  bool PermModify,
                                  bool PermDelete, bool PermRun)

Parameters
User/Group: The User or Group for which to set the permissions on the object.

PermView: Whether or not the user will have View permission on the object.

PermModify: Whether or not the user will have Modify permission on the object.

PermDelete: Whether or not the user will have Delete permission on the object.

PermRun: Whether or not the user will have Run permission on the object.

BP: The Process Director BP Object

ID: The string ID of the Process Director object whose permissions should be set.

PID: The partition ID of the partition where the object resides.

GrantID: The string ID of the user/group for whom permissions should be added.

GrantType: The GrantType object of the permissions.

Returns
boolean: True if the operation succeeds.

Example

var user = User.GetUserByUserID(bp, "User 1");
var oObject = Form.GetFormByFORMID(bp, "FORMID");
// Grant “User 1” permission to view, modify, or run the object
// (but not to delete it)
oObject.SetPermissions(user, true, true, false, true);

// Grant the “Finance” group view permissions only
var group = Group.GetGroupByName(bp, "Finance");
oObject.SetPermissions(group, true, false, false, false);

SetPermissionsEx
This API will set permissions available on the object for a specific User or Group of Users.
public static bool SetPermissionsEx (bp BP, string ID,
                                    string PID,
                                    string GrantID,

100 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

ObjectType GrantType,
                                    short PermView,
                                    short PermModify,
                                    short PermDelete,
                                    short PermRun)

Parameters
BP: The Process Director BP Object

ID: The string ID of the Process Director object whose permissions should be set.

PID: The partition ID of the partition where the object resides.

GrantID: The string ID of the user/group for whom permissions should be added.

GrantType: The Value of the Perm.GrantType object.

PermView: Whether or not the user will have View permission on the object.

PermModify: Whether or not the user will have Modify permission on the object.

PermDelete: Whether or not the user will have Delete permission on the object.

PermRun: Whether or not the user will have Run permission on the object.

Returns
boolean: True if the operation succeeds.

Example

var granttype= TempPerm.GrantType;
var oObject = Form.GetFormByFORMID(bp, "FORMID");
// Grant “User 1” permission to view, modify, or run the object
// (but not to delete it)
oObject.SetPermissionsEx(bp, "IDValue", "PartitionID", "GrantID",

granttype, 1, 1, 0, 1);

UpdateObject
This API will update the name and description properties in the database

Parameters
none

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.UpdateObject();

DataSource Class
This object represents a database DataSource which contains the connection details to connect to a data-
base. The Provider and Connection can be used with native ADO.NET calls to connect to external data-
bases.

Developer's Reference Guide | 101



BP Logix Inc
Process Director Documentation

This object is derived from the ContentObject class. All properties and methods from the ContentObject
are supported for this object, plus the properties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Provider String The Provider string of this connection.

Connection String The connection string for this SQL connection.

DBType String The optional type of database.

Methods
CacheCount (Static Method)
This API will return the number of items in the Datasource cache.

Parameters
DSID: The string ID of the DataSource.

Returns
Integer: The Number of items in the cache.

Example

int count = DataSource.CacheCount("DSID");

ClearCache (Static Method)
This API will remove all items from the Datasource cache.

Parameters
DSID: The string ID of the DataSource.

Returns
Boolean: Returns "true" if the operation succeeds.

Example

bool cleared = DataSource.ClearCache("DSID");

GetDataSourceByDSID (Static Method)
This API will get a DataSource object from the specified ID.

Parameters
BP: The Process Director BP Object

DSID: The ID of the DataSource to retrieve.

Returns
DataSource: Will return null if Datasource isn't found.

102 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

// Normally not used directly
var oDS = DataSource.GetDataSourceByDSID(bp, "DSID");

GetDataSourceByName (Static Method)
This API will get a DataSource object from the specified ID.

Parameters
BP: The Process Director BP Object

Name: The name of the DataSource to retrieve.

Returns
DataSource: Will return null if Datasource isn't found.

Example

// Get the Datasource to my ERP system
var oDS = DataSource.GetDataSourceByName(bp, "ERP System");

DocumentObject Class
This object represents a Document.

This object is derived from the ContentObject class. All properties and methods from the ContentObject
are supported for the Document object, plus the properties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

FileType String The file extension of the document

DOS_FileName String The DOS “friendly” file name of the document

CheckedOut Boolean Is the document currently checked out?

CheckedOutUID String If this document is checked out, the UID of the
user

FilePath String This property will return the physical file path
of an attachment that is stored on the file sys-
tem. This property will return no value if the
document is stored in the Process Director data-
base.

WebViewableOID String The OID of the optional web viewable object

ManagedOID String The OID of the actual document object

Methods
CreateThumbnail

Developer's Reference Guide | 103



BP Logix Inc
Process Director Documentation

This method implements a simple routine that creates a thumbnail image of the first page of a document.

Parameters
BP: The Process Director BP Object.

DID: The ID of the document to retrieve.

Returns
N/A

Example

BPLogix.WorkflowDirector.SDK.Document.CreateThumbnail(bp, "DID");

GetBytes
This API will return the bytes for a document.

Parameters
None

Returns
byte: Will return null if document isn't found.

Example

byte[] DocBytes = Document.GetBytes();

GetDocumentByDID (Static Method)
This API will get a document object from the specified ID.

Parameters
BP: The Process Director BP Object.

DID: The ID of the document to retrieve.

Returns
Document: Will return null if document isn't found.

Example

// Normally not used directly
var oDocument = Document.GetDocumentByDID(bp, "DID");

GetStream
This API will return the stream for a document.

Parameters
None

Returns
stream: Will return null if document isn't found.

104 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

stream DocBytes = Document.GetStream();

RemoveThumbnail
This method implements a simple routine that removes a thumbnail image.

Parameters
BP: The Process Director BP Object.

DID: The ID of the document to retrieve.

Returns
N/A

Example

BPLogix.WorkflowDirector.SDK.Document.RemoveThumbnail(bp, "DID");

SetDocReviewable
This API will set the web viewable object for a document

Parameters
SourcePath: The full path to the local file system of the web viewable object.

Returns
Boolean: True if the operation succeeds.

Example

BPLogix.WorkflowDirector.SDK.Document.SetDocReviewable("c:\\Import\\File.pdf");

UpdateDocData
This API enables you to set or replace the contents of a documen.

Parameters
pData: The Stream object to be updated.

Description (Optional): The String description of the new document data.

Returns
Boolean: True if the operation succeeds.

Example
This example overwrites a document in the Content List from a document stored in a local file system.

Document doc = Document.GetDocumentByDID(bp, "DID")
Stream pData = File.Open("C:\Filepath\file.txt", FileMode.Open);
doc.UpdateDocData(pData);

WriteDocumentToDisk

Developer's Reference Guide | 105



BP Logix Inc
Process Director Documentation

This API will write the document to a local file.

Parameters
DestPath: The full path of the local output file.

Returns
Boolean: True if the operation succeeds.

Example

Document oDocument = Document.GetDocumentByDID(bp, "DID")
oDocument.WriteDocumentToDisk("c:\\Documents\\SavedDoc.docx");

Dropdown Object Class
This object is derived from the ContentObject class. This object represents a Content Object of the
DropDown type. It contains a list of name/value pairs which can fill a DropDown on a Form.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Values List Object The list of name/value pairs for the dropdown
as a List<DropDownValue> class

DDID String The DropDown ID of the DropDown Content
Object (same as ID property)

Methods
GetDropDownByDDID (Static Method)
This API will return a DropDownObject which corresponds to the ID you pass it.

Parameters
BP: The Process Director BP Object.

DDID: The ID of the Dropdown Object to retrieve

Returns
DropDownObject: An instance of the DropDownObject, or null if no DropDown could be found.

Example

var cDD = CurrentForm.FormControl("DropDownPick").Value;
// if "DropDownPick" is a ContentPicker on a Form
var dd = DropDownObject.GetDropDownByDDID(bp, cDD);
// Now we can use dd for our DropDownObject
bp.log0("Number of entries in the DropDown: " + dd.Values.Count);

SetDropDownValues
This API sets the list of DropDown name/value pairs.

106 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Parameters
Values: The list of name/value pairs for the DropDown as a List<DropDownValue> (or other IEnumerable)
class.

Returns
Boolean: Whether or not the call could set the DropDownObject's values.

Example

var ddvlist = new List<DropDownValue>();
ddvlist.Add(new DropDownValue("[Select a State]", ""));
ddvlist.Add(new DropDownValue("California", "CA"));
ddvlist.Add(new DropDownValue("Texas", "TX"));
var cDD = CurrentForm.FormControl("DropDownPick").Value;
// If "DropDownPick" is a ContentPicker on a Form
var dd = DropDownObject.GetDropDownByDDID(bp, cDD);
dd.SetDropDownValues(ddvlist);
// Will set DropDown to contain:
// "[Select a State]:''",
// "California:CA",
// "Texas:TX"

DropdownValue Object Class
This object represents a single name/value pair for use in a DropDown and similar controls.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Text String The text to display for the DropDown entry

Value String The actual value to use when using the
DropDown entry

Methods
GetDropDownValues (Static Method)
This API will return the list of name/value pairs for a dropdown as a List<DropDownValue> class.

Parameters
BP: The Process Director BP Object

DDID: The ID of the DropDown Object from which to retrieve the DropDownValue List.

Returns
List<DropDownValue>: The list of name/value pairs for the DropDown.

Example

var cDD = CurrentForm.FormControl("DropDownPick").Value;
// If "DropDownPick" is a ContentPicker on a Form
var ddlist = DropDownValue.GetDropDownValues(bp, cDD);
bp.log0("Number of entries in the DropDown: " + ddlist.Count);

Developer's Reference Guide | 107



BP Logix Inc
Process Director Documentation

SetDropDownValues
This API sets the list of DropDown name/value pairs.

Parameters
Values: The list of name/value pairs for the DropDown as a List<DropDownValue> (or other IEnumerable)
class.

Returns
Boolean: Whether or not the call could set the DropDownObject's values.

Example

var ddvlist = new List<DropDownValue>();
ddvlist.Add(new DropDownValue("[Select a State]", ""));
ddvlist.Add(new DropDownValue("California", "CA"));
ddvlist.Add(new DropDownValue("Texas", "TX"));
var cDD = CurrentForm.FormControl("DropDownPick").Value;
// if "DropDownPick" is a ContentPicker on a Form
var dd = DropDownObject.GetDropDownByDDID(bp, cDD);
dd.SetDropDownValues(ddvlist);
// Will set DropDown to contain
// "[Select a State]:''",
// "California:CA",
// "Texas:TX"

Constructor
Parameters
Text: The text to display for the DropDown entry

Value (Optional): The actual value to use when using the DropDown entry. If the constructor doesn't
receive this parameter, it will use the 'Text' parameter for the Value as well.

Example

// Create a value with Text:"[Select a Value]" and Value:""
var ddv1 = new DropDownValue("[Select a Value]", "");

// Creates a value with Text:"Item1" and Value:"Item1"
var ddv2 = new DropDownValue("Item1");

// Creates the same DropDownValue as above ("Item1"/"Item1")
var ddv3 = new DropDownValue("Item1", "Item1");

Excel Class
This object represents an Excel document object.

Methods
GetValueByCell
Returns a cell value from an Excel Spreadsheet. This is an overloaded method with the following possible
declarations:
public static string GetValueByCell(bp BP, string ExcelPath, string CellName)

108 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

public static string GetValueByCell(bp BP, Stream ExcelStream, string CellName)

Parameters
bp: The BP Logix Object.

ExcelPath: The file system path string to the Excel file.

ExcelStream: The stream object containing the stream of the Excel file.

CellName: The string name of the cell location.

Returns
List: A string value from the cell.

Example

string ExcelValue = Excel.GetValuesByCell(bp, "C:\\FilePath", "R1C2");

GetValuesByCell
Returns a List object containing cell values for a given number of rows in an Excel spreadsheet. This is an
overloaded method with the following possible declarations:
public static List<string> GetValuesByCell (bp BP, string ExcelPath,
                                           string CellName, int pRows)

public static List<string> GetValuesByCell (bp BP, Stream ExcelStream,
                                           string CellName, int pRows)

Parameters
bp: The BP Logix Object.

ExcelPath: The file system path string to the Excel file.

ExcelStream: The stream object containing the stream of the Excel file.

CellName: The string name of the cell location.

pRows: The integer number of rows to return.

Returns
List: A list object containing the string values from the cell rows.

Example

// Return the values from four rows in the excel file.
List ExcelValues = Excel.GetValuesByCell(bp, "C:\\FilePath", "R1C2", 4);

GetValueByRangeName
Returns a List object containing cell values for a given number of rows in an Excel spreadsheet. This is an
overloaded method with the following possible declarations:
public static string GetValueByRangeName (bp BP, string ExcelPath,
                                         string RangeName)

public static string GetValueByRangeName (bp BP, Stream ExcelStream,
                                         string RangeName)

Developer's Reference Guide | 109



BP Logix Inc
Process Director Documentation

Parameters
bp: The BP Logix Object.

ExcelPath: The file system path string to the Excel file.

ExcelStream: The stream object containing the stream of the Excel file.

RangeName: The named range from which to pull the value.

Returns
List: A list object containing the string values from the cell rows.

Example

string ExcelValue = Excel.GetValueByRangeName(bp, "C:\\FilePath",
    "NamedRange");

GetValuesByRow
Returns a List object containing cell values for a given row in an Excel spreadsheet.

Parameters
bp: The BP Logix Object.

Stream: The stream object containing the stream of the Excel file.

pRow: The integer row number from which to pull the values.

Returns
List: A list object containing the string values from the row.

Example

string ExcelValue = Excel.GetValuesByRow(bp, [StreamObject], [RowInteger]);

Folder Class
This object represents a Folder, and is derived from the ContentObject class. All properties and methods
from the ContentObject are supported for this object, plus the properties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ID String The ID of this specific form instance

Name String The text name of this specific form instance

PID String The Partition ID of the partition where this form resides

CreateTime DateTime The date/time of this specific form instance’s creation

UpdateTime DateTime The most recent date/time that a user changed this specific
form instance

CreateUID String The User ID of the user which created this specific form

110 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

instance

UpdateUID String The User ID of the user who most recently update this spe-
cific form instance

Methods
CreatePath (Static Method)
This API will create the complete folder path for the specific input.

Parameters
BP: The Process Director BP Object

PartitionID: The ID of the partition to use.

Path: The complete path to of the folder structure to create.

Returns
Folder: The newly created folder.

Example

// Normally not used directly
var oFolder = Folder.CreatePath(bp, CurrentPartition, "/folder1/folder2");

CreateNewFolder (Static Method)
This API will create a new folder in the specified parent.

Parameters
BP: The Process Director BP Object

ParentID: The ID of the parent.

FolderName: The name of the new folder to create.

Returns
Folder: The newly created folder.

Example

// Normally not used directly
var oFolder = Folder.CreateNewFolder(bp, SomeParentID, "New Folder");

CreateSubFolder
This API will create a sub folder under the current folder

Parameters
FolderName: The name of the folder to create.

Returns
Folder: The newly created folder.

Developer's Reference Guide | 111



BP Logix Inc
Process Director Documentation

Example

var oFolder = Folder.CreateNewFolder(bp, SomeParentID, "New Folder");
var NewFolder = oFolder.CreateSubFolder("Subfolder Name");

GetFolderByID (Static Method)
This API will get a Folder from the specified ID.

Parameters
BP: The Process Director BP Object.

FID: The ID of the folder to retrieve.

Returns
Folder: The actual folder or null if not found.

Example

Var oFolder = Folder.GetFolderByID (bp, "FolderID");

GetFolderByPathName (Static Method)
This API will get a Folder object from the specified Folder Path.

Parameters
BP: The Process Director BP Object

PID: The Partition ID or name.

PathName: The complete path of folder to retrieve.

Returns
Folder: Will return null if partition isn't found.

Example

var oFolder = Folder.GetFolderByPathName (bp, CurrentPartition,
"/folder1/folder2");

Form Class
This object represents a Form instance. An instance is a completed Form, or one that is currently being
edited.

When developing Form scripts (in the various callback methods such as BP_Event) or Timeline scripts, you
are automatically given an instance of the “current” Form with the CurrentForm variable.

This object is derived from the ContentObject class. All properties and methods from the ContentObject
are supported for this object, plus the properties below.

112 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Properties #

PROPERTY NAME DATA TYPE DESCRIPTION

CloseOptions Code Enum This can be set in any form script. This property
can be set to the following:

FormCloseOptions.CancelAndClose This will
cancel the form when script returns.

FormCloseOptions.SaveAndClose This will
save and close the form when script returns.

FormCloseOptions.NoneNo Action (default)

ControlFocus Form Control
Object

This property can be used to set the focus to a
named control after the event returns. Set this
property to null to prevent the focus from being
set.
CurrentForm.ControlFocus = Cur-
rentForm.FormControl("Text1");

CreateTime DateTime The date/time of this specific form instance’s
creation

CreateUID String The User ID of the user which created this spe-
cific form instance

CustomOnLoad JavaScript Func-
tion Name

Enables you to specify a block of custom
JavaScript to run in the OnLoad event of the
Form.

For example, in an HTML Code control on the
Form, you might specify the JavaScript to run,
then set the CustomOnload property as follows
in the Raw HTML property of the control:

<script>
function loadAlert ()
{
    alert("Hello, World!")
}

CustomOnLoad = loadAlert
();
</script>

As always, when using JavaScript,
ensure the HTML Code control's name is

Developer's Reference Guide | 113



BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

blank, to prevent Process Director from try-
ing to interpret the curly brackets as a sys-
tem variable.

In this example, the code above will display the
alert box when the form loads.

DOCTYPE_HTML Boolean If set to true will use HTML rather than XHTML

DOCTYPE_HTML5 Boolean If set to true will use HTML rather than XHTML

FormCase Case Instance
Object

Returns the Case instance associated with a
Form instance, e.g.:
var currCase = CurrentForm.FormCase;

FORMID String The ID of the Form Definition for this instance

FORMINSTID String The optional ID of the Form instance

FormPartition Partition Object Set to the Partition object of the Forms par-
tition

ID String The ID of this specific form instance

Name String The text name of this specific form instance

PID String The Partition ID of the partition where this form
resides

ReturnNullsForErrors Boolean If set to true, APIs such as FormControl will
return a null if the form control isn't found.
Otherwise an empty class will be returned. The
default is false.

SkipSetFocus Boolean Skips the set focus event.

UpdateTime DateTime The most recent date/time that a user changed
this specific form instance

UpdateUID String The User ID of the user who most recently
update this specific form instance

Methods #
AddErrorMessage
This API will add an error message to the form which will be displayed to the user. If an error message is
added, the user won't be able to submit the form. This is an overloaded method with the following pos-
sible declarations:
public void AddErrorMessage (FormMessageString pMessage,
                            params object[] pParams)

114 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

public void AddErrorMessage (string pFormat, params object [] pParams)
public T AddErrorMessage<T>(T ret, string pFormat, params object[] pParams)

public T AddErrorMessage<T> (T ret, FormMessageString pMessage,
                            params object[] pParams)

Parameters
pMessage: The error message to return (this can be a string or the FormMessageString class).

pFormat: The format string for the error message.

pParams: A parameters object containing the message parameters.

Returns
None

Example

// This example will be called in the validation event of a form script
protected override void BP_Validation()
{
    // Display an error on the form if the Amount form field is > 100
    // and place the focus on the form field “Amount”
    If (CurrentForm.FormControl("Amount").Number > 100)

{
        CurrentForm.AddErrorMessage(new FormMessageString("Must be < 100",
"Amount"));
    }
}

AddInfoMessage
This API will add an informational message to the form which will be displayed to the user. If an inform-
ational message is added, the user won't be able to submit the form. This is an overloaded method with
the following possible declarations:
public void AddInfoMessage (FormMessageString pMessage,
                           params object[] pParams)

public void AddInfoMessage(string pFormat, params object[] pParams)

Parameters
pMessage: The error message to return (this can be a string or the FormMessageString class).

pParams: A parameters object containing the message parameters.

Returns
None

Developer's Reference Guide | 115



BP Logix Inc
Process Director Documentation

Example

// This example will be called in every event
protected override void BP_Event()
{

// Display a message on the form if the Amount form field is > 100
    If (CurrentForm.FormControl("Amount").Number > 100)

{
        CurrentForm.AddInfoMessage("The amount is > 100");
    }
}

AddJavaScript
This API adds a block of JavaScript code to the form.

Parameters
JavaScript: The actual JavaScript code to add.

Returns
None

Examples

// We'll add our JavaScript in the initial load
protected override void BP_ViewStateiInit()
{
    CurrentForm.AddJavaScript("alert('Please submit the form before
        closing it.')");
}

ClearJavaScript
This API clears all JavaScript code from the form.

Parameters
None.

Returns
None

Examples

// We'll clear our JavaScript in the initial load
protected override void BP_ViewStateiInit()
{
    CurrentForm.ClearJavaScript();
}

AddTopHTML
This API adds a block of HTML code to the top of a form.

Parameters
pHTML: A string value containing the raw HTML code to add to the top of the page.

116 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
None

Examples

// We'll add our JavaScript in the initial load
protected override void BP_ViewStateiInit()
{
    CurrentForm.AddTopHTML("<p>Hello, World!</p>");
}

AddBottomHTML
This API adds a block of HTML code to the bottom of a form.

Parameters
pHTML: A string value containing the raw HTML code to add to the top of the page.

Returns
None

Examples

// We'll add our JavaScript in the initial load
protected override void BP_ViewStateiInit()
{
    CurrentForm.AddBottomHTML("<p>Hello, World!</p>");
}

ConvertSysVarsInString
This API converts system variables in a string.

Parameters
String: The string in which to find the system variables.

FormControl: (Optional) The form control to reference for control-specific system variables (e.g. "{ROW_
NUM}")

Returns
String: The resultant string after converting every system variable.

Examples

// Returns "USER1 editing this form on 2008-01-01"
bp.log0(CurrentForm.ConvertSysVarsInString("{CURR_USER} editing this form
 on {CURR_DATE}"));
var cText = CurrentForm.FormControl("Item", 2);

// Returns "Row number: 2"
string result2 = CurrentForm.ConvertSysVarsInString("Row number: {ROW_NUM}",
cText);

CreateDummy

Developer's Reference Guide | 117



BP Logix Inc
Process Director Documentation

This API creates a dummy copy of an existing form, or of an Array Row, which can be filled with data
attached to a Process Timeline via other APIs. This is an overloaded method with the following possible
declarations:
public static FormControl CreateDummy(Form form)

public static FormControl CreateDummy(FormControl fcArray, int row)

Parameters
Form: The Form object to reproduce.

fcArray: An Array control.

row: An Array row.

Returns
None

Examples

Form myForm = CreateDummy(CurrentForm);

DoValidation
This API initiates FormValidation.

Parameters
SkipValidationRules: Boolean to determine whether to skip the validation rules for the form.

OnlyCheckEventField: Boolean to determine whether to validate only the event field.

Returns
None

Example

CurrentForm.DoValidation(false, false);

FindControlInForms (Static Method)
This API searches through each field of a given name containing a given value and returns a list of each
form control that matches the query. This is an overloaded method with the following possible declar-
ations:
public static List<FormControl> FindControlInForms (bp BP, string FCName,
                                                   string Value)

public static List<FormControl> FindControlInForms (bp BP, string FCName,
                                                   string FORMID,
                                                   string Value)

Parameters
BP: The BP Object.

FCName: The name of the form controls that will be returned.

FORMID (Optional): The FORMID of the form definition that contains the controls.

118 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Value: The value of the form controls that will be returned.

Returns
List: A list object containing the form controls.

Example

List myList = FindControlInForms(bp, "ControlName", "ControlValue");

FormControl
This API will return a single form control. When using arrays, if you retrieve a form object without spe-
cifying a row number, you are acting on the entire column. This is an overloaded method with the fol-
lowing possible declarations:
public FormControl FormControl(string Name, int ArrayNum)

public FormControl FormControl(string pName, FormControl RefControl)

public FormControl FormControl (string pName, FormControl RefArray,
                               int ArrayNum)

Parameters
Name: The name of the form control to retrieve.

ArrayNum: (optional) Form controls in an array, the row number of the specific control

ReturnNullIfNotFound: (optional) If set to true, the API will return a null if the form control isn't found. If
set to false (default), the API will return an empty FormControl object if it isn't found

Returns
FormControl: The form control instance.

Example

// Add 1 to the Count form control
CurrentForm.FormControl("Amount").Number += 1;

// Make the Item in row 2 required
CurrentForm.FormControl("Item", 2).Display.Required = eYNU.Yes;

// Make the entire Description column required
CurrentForm.FormControl("CodeComment").Display.Required = eYNU.Yes;

FormControls
This API will return the list of all form controls for this form instance.

Parameters
Message: The actual error message to add

Returns
List<FormControl> The list of all form controls for this form instance.

Developer's Reference Guide | 119



BP Logix Inc
Process Director Documentation

Example

var formControls = BaseCurrentForm.FormControls;

FormControlByID
This API will return a form control which corresponds to the ID you pass it. You would use this when you
have a Form's ID (e.g. from a ControlPicker control). This is an overloaded method with the following pos-
sible declarations:
public FormControl FormControlByID(string FCID)

public FormControl FormControlByID(string FCID, int ArrayNum)

public FormControl FormControlByID(string pFCID, FormControl RefControl)

Parameters
ArrayNum: (optional) Form controls in an array, the row number of the specific control

FCID: The ID of the control to retrieve

pFCID: The ID of the control to retrieve

RefControl: Optional) The FormControl object to be retrieved

Returns
FormControl: The form control instance.

Examples

var cPicker = CurrentForm.FormControl("CodeComment").Value;
// If "ControlsPick" is a ControlPicker on the Form
// set the form control's text to "Add Another"
CurrentForm.FormControlByID(cPicker).Text = "Add Another";

var cPick2 = CurrentForm.FormControl("CodeComment2").Value;
// Increment the control's value by 1
CurrentForm.FormControlByID(cPick2).Number += 1;
// Disable the whole column of the control
CurrentForm.FormControlByID(cPick2).Display.Enabled = false;

FormNavigate
This API is an override for the base FormNavigate method, and enables you to create a custom Form Nav-
igate method.
public virtual void FormNavigate(BPLogix.WorkflowDirector.SDK.bp bp, string URL)

Parameters
bp: The Process Director SDK handle.

URL: The string value containing the URL to which to navigate.

Returns
None.

120 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Examples

public virtual void FormNavigate(BPLogix.WorkflowDirector.SDK.bp bp, string URL)
{

// Your custom page navigation code here.
}

GetErrorMessages
This API will get the list of all current error messages. The error messages may have been placed there
from the built-in validation, or from messages added from script.

Parameters
None

Returns
List<FormMessageString>: The list of form error messages.

Example

// This example will be called after built-in validation has occurred
protected override void BP_Validation_Post()
{
    var ErrorList = CurrentForm.GetErrorMessages();

// Check to see if there are more than 5 error messages
    if (ErrorList.Count > 5)

{
        CurrentForm.AddInfoMessage("More than 5 errors!");
    }
}

GetFormByFORMID (Static Method)
This API will get a Form object based on the Form ID.

Parameters
BP: The BP environment.

FORMID: The ID of the form to retrieve.

Returns
Form: An instance of the form object, or null if it couldn't be found.

Example

// This example will get a form instance, and log its name
var OtherForm = Form.GetFormByFORMID(bp, "FORMID");
bp.log0("The form name is: " + OtherForm.Name);

GetFormByFORMINSTID (Static Method)
This API will get a Form instance object based on the ID.

Parameters
BP: The BP environment.

Developer's Reference Guide | 121



BP Logix Inc
Process Director Documentation

FORMINSTID: The ID of the form instance to retrieve

Returns
Form: An instance of the form object, or null if it couldn't be found.

Example

// This example will get a form instance, and log its name
var myForm = Form.GetFormByFORMINSTID(bp, "FORMINSTID");
bp.log0("The form instance name is: " + myForm.Name);

GetFormSchema
This API will get an list object containing the form's schema.

Parameters
None.

Returns
List: A list object containing the form's schema.

Example

// This example will get a form schema
List mySchema = Form.GetFormSchema();

GetInfoMessages
This API will get the list of all current informational messages. The info messages must have been pre-
viously added from script.

Parameters
None

Returns
List<FormMessageString>: The list of form error messages.

Example

// This example will be called immediately prior to displaying the form
protected override void BP_Display()
{
    var InfoList = CurrentForm.GetInfoMessages();
    foreach (var info in InfoList)

{
bp.log0("INFO MESSAGE: " + info);

    }
}

GetJavaScript
This API gets the current blocks of JavaScript that are added to the form.

Parameters
None

122 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
List<string>: The blocks of JavaScript that will be added to the form.

// This example will get the Form's Javascript
List myJS = Form.GetJavaScript();

Instantiate (Static Method)
This API will instantiate a new form instance. This is an overloaded method with the following possible
declarations:
public static Form Instantiate(bp BP, string FORMID)

public static Form Instantiate (bp BP, string FORMID,
                               bool SkipDefaultValues)

Parameters
BP: The bp environment

FORMID: The ID of the form definition to instantiate

SkipDefaultValues: Optional Boolean parameter to tell the Form processor to skip setting default form
values.

Returns
Form: An instance of the form object, or null if it couldn't be found.

Example

// This example will create a new form instance
var NewFormInstance = Form.Instantiate(bp, ContentObject.GetObjectByPathName(bp,
    “Partition1”,

“/My Project/My Form Definition”).ID);
bp.log0("The form instance name is: " + NewFormInstance.Name);

RecalcFormInstanceName
This API will force the Form engine to recalculate the form instance name. This should be used, for
example, if you change a form field value that is used in the instance name programmatically.

Example

CurrentForm.RecalcFormInstanceName();

RowCount
This API returns the number of rows in an array. The API call will only work on an array control.

Parameters
None

Returns
The number of rows in the array.

Developer's Reference Guide | 123



BP Logix Inc
Process Director Documentation

Examples

// Save the number of rows in the array named 'MyArray'
int rows = CurrentForm.FormControl("MyArray").RowCount();

SaveAndSubmit
This API will save a form instance (just like SaveForm does), but won't prevent a process from running if
the form submission would normally trigger the start of a process.

Parameters
None

Returns
None

Example

CurrentForm.SaveAndSubmit();

SaveForm
This API will save the current form irrespective of whether it is being displayed. It will increment the form
internal version number. If this is a new form instance, calling this API won't automatically start a Process
Timeline instance associated with this form definition.

Parameters
None

Returns
None

Example

CurrentForm.SaveForm();

SynchronizeFields
This API will synchronize all form fields marked as synchronized fields to synchronize with other fields of
the same name in the specified process. If no process ID is specified, the process returned by GetProcess
() is used by default.

Parameters
pPROCINSTID: An optional parameter containing the string value of the Process Instance ID.

Returns
None

Example

CurrentForm.SynchronizeFields();

124 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

UnlockForm
This API will unlock a Form that has been locked for editing.

Use caution when using this API call! If a form is already locked for editing, and you unlock and
edit the form, the locking user may save their version of the form later, and all of your changes will
be overwritten.

Parameters
None

Returns
None

Example

CurrentForm.UnlockForm();

Events #
There are six main types of events that are initiated when using Forms, each of which will be discussed sep-
arately below. Each of these event types contains a series of individual events that occur in a specific
order, called the order of operations. Developers and implementers have access to the order of oper-
ations for each event type in two different ways: via scripting, or via the use of Custom Tasks.

When each event fires, scripted event procedures are implemented first, then Custom Tasks associated
with the event are implemented. As a result, event scripts can set values or perform other operations
that, when the script is complete, are available for the Custom Task to use when it is implemented.
Event Types
New Form is opened
When a new form is opened, the following set of events are fired in the order shown below:

1. BP_FormInitialize Script
2. Form Creation Custom Task
3. BP_ViewStateInit Script
4. View State Init Custom Task
5. BP_Rules Script
6. Before Conditions Custom Task
7. BP_Rules_Post Script
8. After Conditions Custom Task
9. BP_Display Script
10. Form Display Custom Task

Existing Form is opened
When an existing Form is opened, the following set of events are fired in the order shown below:

Developer's Reference Guide | 125



BP Logix Inc
Process Director Documentation

1. BP_ViewStateInit Script
2. View State Init Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task
5. BP_Rules_Post Script
6. After Conditions Custom Task
7. BP_Display Script
8. Form Display Custom Task

When an event is fired from a form control
When a control event is called, the following set of events are fired in the order shown below:

1. BP_Event Script
2. Event Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task
5. BP_Rules_Post Script
6. After Conditions Custom Task
7. BP_Display Script
8. Form Display Custom Task

When a Form is closed from the OK or task completion button
When a Form is closed by the OK or other task completion button, the following set of events are fired in
the order shown below:

1. BP_Event Script
2. Event Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task
5. BP_Rules_Post Script
6. After Conditions Custom Task
7. BP_Validation Script
8. Before Validation Custom Task
9. BP_Validation_Post Script
10. After Validation Custom Task
11. BP_Completed Script
12. Form Completed Custom Task

When a Form is saved without closing
When a Form is saved, but not closed, the following set of events are fired in the order shown below:

1. BP_Event Script
2. Event Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task

126 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

5. BP_Rules_Post Script
6. After Conditions Custom Task
7. BP_Display Script
8. Form Display Custom Task

When a Form is saved and closed without completing a task
When a Form is saved and closed without completing a task, the following set of events are fired in the
order shown below:

1. BP_Event Script
2. Event Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task
5. BP_Rules_Post Script
6. After Conditions Custom Task

FormControl Class
This object represents a single form field.

Form array controls are 1-based, so they always start with row number 1 (not 0).

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Name String The name of the form field

FCID String The ID of this form field

Text String The string/text representation of the form field’s
value

Value Data type of
Form Field

The raw value of a form field

Number Decimal The numerical representation of the form field’s
value

DateTime DateTime The DateTime object that represents the form
field’s value

DisplayString String This property can be used to get (but not set) the
form control’s display string.

Checked Boolean This represents whether the control is checked
(true/false, for Check Box controls only)

Expanded Boolean This represents whether the control is expanded
or collapsed (true/false, for Sections only)

Developer's Reference Guide | 127



BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

ClientID String The client-side ID which can be used by JavaScript
to access the control

IsInArray Boolean True if the control exists within an array; false oth-
erwise

DDHasItems Boolean This represents if the DropDown control has items
in it (true/false, for DropDown controls only)

ColumnChildren List Object A list of controls in an array column (for Array
column controls only)

ArrayFCID String If this control is in an array, the FCID of the array
control

ArrayNum Integer If this control is in an array, the row number

ArrayName String If this control is in an array, the name of the array

ArrayControl Form Control
Object

If this control is in an array, the FormControl of
the array

ArrayColumns List Object If this control is an actual array, the
List<FormControl> of children

Display.EventField Boolean Sets if the control is an event field (eYNU)

Display.DataType Code Enum Sets the Data Type of the control (FormEnum-
s.eDataType enum)

Display.FriendlyName String Sets the friendly name of the control

Display.Visible Boolean Gets or sets if the control is visible (eYNU)

Display.Enabled Boolean Gets or sets if the control is enabled (eYNU)

Display.Required Boolean Gets or sets if the control is required (eYNU)

Display.Style Code Enum Gets or sets the style of the control

Display.ToolTip String Gets or sets the tooltip for this control

Display.Control Form Control
Object

Gets the actual ASP.NET Control of this Form con-
trol

Examples

// Sets the control “MyTextBox” as an event field
CurrentForm.FormControl("MyTextBox").Display.EventField = eYNU.Yes;

// Sets the control “MyTextBox” Friendly Name
CurrentForm.FormControl("MyTextBox").Display.FriendlyName =
    "Your current address";

Methods
AddRow

128 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This API adds a row to an Array

Parameters
At: (Optional) The position to insert the new row. Without this parameter, the API will add the new row to
the end of the Array.

Returns
Integer: The number of rows in the array after the Add

Examples

// This will add a row to the beginning of "Array1"
CurrentForm.FormControl("Array1").AddRow(1);

// This will add a row to the end of "Array1"
CurrentForm.FormControl("Array1").AddRow();

AddRowToCommentLog
This API adds a row to a comment log

Parameters
CodeComment: (Optional) The CodeComment for the CommentLog. Not all Comment Log controls use a
CodeComment. Specify null for these controls.

Date: The DateTime to be associated with the new comment.

UID: The ID of the user to be associated with the new comment.

Comment: The comment to add.

Returns
Integer: The number of rows in the Comment Log after the Add.

Examples

// This will add a new comment for the current user
CurrentForm.FormControl("ComLog1").AddRowToCommentLog(null,
    DateTime.Now, CurrentUser.UID, "This is my new comment");

AddToDropDown
This API adds an item or list of items to a DropDown control. This is an overloaded method with the fol-
lowing possible declarations:
public void AddToDropDown(IEnumerable<DropDownValue> DDList)

public void AddToDropDown(DropDownValue DDV, params DropDownValue[] DDVs)

public void AddToDropDown (IEnumerable<string> ListText,
                          IEnumerable<string> ListValues)

public void AddToDropDown(IEnumerable<string> Values)

public void AddToDropDown(string pValue, params string[] Values)

Parameters
DDList: DropDownValue objects or strings to add to the dropdown.

Developer's Reference Guide | 129



BP Logix Inc
Process Director Documentation

Item1, Item2, Item3, etc.: DropDown items to add to the DropDown control.

ListText: List of Text (name) values (use with ValuesList)

ListValues: List of Values to add to the dropdown (use with ListText)

Values: iEnumerable or Params object containing string values

pValue: String value to add

Returns
None

Examples

// This example will build a DropDownValue list and a name/value pair of lists
var ddList = new List<DropDownValue>();
var textList = new List<string>();
var valList = new List<string>();
for(int i = 0; i < 10; i++)
{

ddList.Add(new DropDownValue("Entry " + i, i.ToString()));
textList.Add("Entry " + i);
valList.Add(i.ToString());

}

// Both of the following AddToDropDown calls will add the same ten entries
CurrentForm.FormControl("Dropdown1").AddToDropDown(ddList);
CurrentForm.FormControl("Dropdown2").AddToDropDown(textList,valList);

// The next AddToDropDown call will add only the numerical portion to the
// DropDown control
CurrentForm.FormControl("Dropdown3").AddToDropDown(valList);

// Items: 1, 2, 3, 4, etc.
// Add the entries "Item 1", "Item 2", and "Item 3" to the
// DropDown control
CurrentForm.FormControl("Dropdown4").AddToDropDown("Item 1", "Item 2",
    "Item 3");

ClearDropDown
This API removes all of the items from a DropDown control

Parameters
None

Returns
None
Examples

CurrentForm.FormControl("Dropdown1").ClearDropDown();

ClearRows
This API removes all of the rows in an Array control

Parameters
None

130 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
None

Examples

CurrentForm.FormControl("Array1").ClearRows();

ColumnSum
This API adds all of the values in an Array Column control

Parameters
None

Returns
Decimal: The total of each value in the Array Column.

Examples

// Sums up each "Price" field in the Array
decimal tot = CurrentForm.FormControl("Price").ColumnSum();

FillDropDown
This API adds an item or list of items to a DropDown control, but clears the DropDown first. The API will
attempt to re-select the previous value of the dropdown control, but won't select it if the value no longer
exists in the DropDown. This is an overloaded method with the following possible declarations:
public void FillDropDown(IEnumerable<DropDownValue> DDList)

public void FillDropDown(DropDownValue DDV, params DropDownValue[] DDVs)

public void FillDropDown (IEnumerable<string> listText,
                         IEnumerable<string> listValues)

public void FillDropDown(IEnumerable<string> values)

public void FillDropDown(string Value, params string[] Values)

Parameters
DDList: DropDownValue objects or strings to add to the dropdown.

Item1, Item2, Item3, etc.: DropDown items to add to the DropDown control.

ListText: List of Text (name) values (use with ValuesList)

ListValues: List of Values to add to the dropdown (use with ListText)

Values: iEnumerable or Params object containing string values

Returns
None

Developer's Reference Guide | 131



BP Logix Inc
Process Director Documentation

Examples

// This example will build a DropDownValue list and a name/value
// pair of lists
var ddList = new List<DropDownValue>();
var textList = new List<string>();
var valList = new List<string>();
for(int i = 0; i < 10; i++)
{

ddList.Add(new FormControl.DropDownValue("Entry " + i, i.ToString()));
textList.Add("Entry " + i);
valList.Add(i.ToString());

}

// Both of the following AddToDropDown calls will fill the DropDown with
// the same ten entries
CurrentForm.FormControl("Dropdown1").FillDropDown(ddList);
CurrentForm.FormControl("Dropdown2").FillDropDown(textList, valList);

// The next AddToDropDown call will fill the DropDown with only the
// numerical portion
// Items: 1, 2, 3, 4, etc.
CurrentForm.FormControl("Dropdown3").FillDropDown(valList);

// Fill the DropDown with the entries "Item 1", "Item 2", and "Item 3"
CurrentForm.FormControl("Dropdown4").FillDropDown("Item 1", "Item 2",
    "Item 3");

RemoveRow
This API removes a row in an Array

Parameters
At: (Optional) The position of the row to remove. Without this parameter, the API will remove the last row
in the Array.

Returns
Integer: The number of rows in the array after the Remove.

Examples

// This will remove the first row in "Array1"
CurrentForm.FormControl("Array1").RemoveRow(1);

// This will remove the last row in "Array1"
CurrentForm.FormControl("Array1").RemoveRow();

SelectDropDown
This API selects a value in the DropDown control. The API may add the value if it doesn't find it, depending
on the parameters. This is an overloaded method with the following possible declarations:
public void SelectDropDown(string Value)

public void SelectDropDown(string Value, string Text)

public void SelectDropDown(string Value, bool AddIfNotFound)

public void SelectDropDown(List<string> Values)

132 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Parameters
AddIfNotFound: (Optional) Whether or not to add an entry in the DropDown if the API can't find the value
(true/false).

Text: (Optional) The text to add if the API can't find the value.

Value: The value to select in the DropDown.

Values: String list of values to select.

Returns
None

Examples

// This example will try to select the value "1", and will add
// "[1]"/"1" (name/value) to the DropDown if the API can't find
// "1" already in the DropDown
CurrentForm.FormControl("Dropdown1").SelectDropDown("1");

// This example will try to select the value "1", and will add
// "[Item 1]"/"1" (name/value) to the DropDown if the API can't find
// "1" already in the DropDown
CurrentForm.FormControl("Dropdown2").SelectDropDown("1", "Item 1");

// This example will try to select the value "1", and won't add
// anything to the DropDown if the API can't find "1" already in
// the DropDown
CurrentForm.FormControl("Dropdown3").SelectDropDown("1", false);

SetValue
This function sets the value, though not necessarily the display string, of a form control.

Parameters
Val: The value for the form control.

sDisplay: (Optional) The string the form control will display

Example

CurrentForm.FormControl("ControlName").SetValue("Value");

Sort
This API sorts the rows in an Array. This is an overloaded method with the following possible declarations:
public bool Sort(string PrimaryColumn)

public bool Sort(string PrimaryColumn, string SecondaryColumn)

public bool Sort (string PrimaryColumn, string SecondaryColumn,
                 string TertiaryColumn)

public bool Sort(string PrimaryColumn, bool Descending)

public bool Sort (string PrimaryColumn, string SecondaryColumn,
                 bool Descending)

public bool Sort (string PrimaryColumn, string SecondaryColumn,
                 string TertiaryColumn, bool Descending)

Developer's Reference Guide | 133



BP Logix Inc
Process Director Documentation

Parameters
PrimaryColumn: The name of the column which is the first sort key

SecondaryColumn: The optional name of the column which is the second sort key

TertiaryColumn: The optional name of the column which is the third sort key

Descending: Optional Boolean if set true will sort rows descending

Returns
None

Examples

// Sort the array
CurrentForm.FormControl("Array1").Sort("ColumnName");

SwapRows
This API exchanges the positions of two rows in an Array

Parameters
RowFrom: The first row number to swap

RowTo: The second row number to swap

Returns
None

Examples

// Swap the 1st row with the 4th
CurrentForm.FormControl("ArrayName").SwapRows(1, 4);

FormMessageString Class
Enables adding a string message to a form.

Properties

PROPERTIES NAME DATA TYPE DESCRIPTION

Text String Message to use on form.

ControlName String Control on form to focus on.

ArrayNum Integer If in an array specify the array row number.

Constructor
Parameters
Text: Message to use on form.

ControlName: Control on form to focus on.

ArrayNum: If in an array specify the array row number.

134 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

var msg = new FormMessageString("Please provide a name.", "Name");

Group Class
This object represents a group of users.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

GID String The internal ID of the group

GroupName String The unique string to identify the group

Users List Object The list of users which belong to the group,
returned as a List<User>.

Methods
AddUser
This API adds the specified user to the group. If the user is already in the group, a note of that will be
made in the logs, but the function won't add a duplicate user to the group. This is an overloaded method
with the following possible declarations:
public void AddUser(User User)

public void AddUser(string UID)

Parameters
UID: The ID of the user to add to the group

User: The actual user object to add to the group

Returns
None

Example

var oUser = User.GetUserByUserID(bp, "User 1");
var oGroup = Group.GetGroupByName(bp, "Group 1");

// The following two calls do the same thing
// (add "User 1" to "Group 1")
oGroup.AddUser(oUser); // Call with the User object
oGroup.AddUser(oUser.UID); // Call with the User ID

CreateGroup
This API creates a user group.

Parameters
BP: The bp environment

Name: The name of the group to create

Developer's Reference Guide | 135



BP Logix Inc
Process Director Documentation

Returns
None

Example

var oGroup = Group.CreateGroup(bp, "Group 1");

Delete
This API will remove the Group from the system.

Parameters
None

Returns
None

Example

var oGroup = Group.GetGroupByName(bp, "Group 1");
oGroup.Delete();

DeleteGroup
This API will remove the Group from the system.

Parameters
BP: The BP Logix environment.

GroupName: The string name of the group to delete.

Returns
Boolean: Returns false of the operation fails.

Example

bool deleted = DeleteGroup(bp, "GroupName");

GetAllGroups (Static Method)
This static method returns a list of all groups on the system.

Parameters
BP: The bp environment

Returns
List<Group>: A Group object representation of the group

Example

var allGroups = Group.GetAllGroups(bp);

GetGroupByID (Static Method)

136 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This API will get a group object from the specified ID.

Parameters
BP: The bp environment

ID: The ID of the group to retrieve

Returns
Group: A Group object representation of the group

Example

// Normally not used directly
var oGroup = Group.GetGroupByID(bp, "1234");

GetGroupByName (Static Method)
This API will get a group object from the specified name.

Parameters
BP: The bp environment

Name: The name of the group to retrieve

Returns
Group: A Group object representation of the group

Example

// Get the group named "Group 1"
var oGroup = Group.GetGroupByName(bp, "Group 1");

// Get a list of the users in "Group 1"
var Users = oGroup.Users;

HasUser
This API checks if the specified user exists in the group. In some situations, it may be more efficient to
view the list of groups to which a specific user belongs, using the User.Groups property. This is an over-
loaded method with the following possible declarations:
public bool HasUser(User User)

public bool HasUser(string UID)

Parameters
UID: The ID of the user to test in the group

User: The actual user object to test in the group

Returns
True/False: Whether or not the specified user exists in the group

Developer's Reference Guide | 137



BP Logix Inc
Process Director Documentation

Example

var oUser = User.GetUserByUserID(bp, "User 1");
var oGroup = Group.GetGroupByName(bp, "Group 1");

// The following two conditional tests test the same thing
// (is "User 1" in "Group 1")
if(oGroup.HasUser(oUser))
{

// Do action
}
// OR
if(oGroup.HasUser(oUser.UID))
{

// Do action
}

NormalizeGroupList
This API will convert a comma-separated string or DataItem containing a list of Groups into a normalized
List object. This is an overloaded method with the following possible declarations:
public static List<Group> NormalizeGroupList(bp BP, string pGroupList)

public static List<Group> NormalizeGroupList (bp BP, string pGroupList,
                                              bool ReturnNullOnInvalid)

public static List<Group> NormalizeGroupList(bp BP, ref DataItem pGroups)

public static List<Group> NormalizeGroupList (bp BP, ref DataItem pGroups,
                                              bool ReturnNullOnInvalid)

Parameters
BP: The BP Logix environment.

pGroupList: A string containing a comma-separated list of groups.

pGroups: A DataItem object containing a list of groups.

ReturnNullOnInvalid: A boolean value specifying whether to return a null List object if the list is invalid.

Returns
List: A List object containing the groups.

Example

var groupList = NormalizeGroupList(bp, "Group1,Group2,Group3");

RemoveUser
This API will remove the specified user from the group. This is an overloaded method with the following
possible declarations:
public void RemoveUser(User User)

public void RemoveUser(string UID)

Parameters
UID: The ID of the user to remove from the group

138 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

User: The actual user object to remove from the group

Returns
None

Example

var oUser = User.GetUserByUserID(bp, "User 1");
var oGroup = Group.GetGroupByName(bp, "Group 1");
oGroup.RemoveUser(oUser);

MetaCategory Class
This object represents a MetaData Category.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

PID String The Partition ID.

Name String TheName of the Meta Data category.

CATID String The ID of the Meta Data category.

Methods
GetCategory (Static Method)
This API will return a MetaCategory Object for a specified Meta Data Category.

Parameters
BP: The Process Director BP Object

PID: The Partition ID of the partition containing the Meta Data Category.

CATID: A string containing the Name or CATID of the Meta Data Category.

Returns
MetaCategory: A MetaCategory object.

Example

MetaCategory myCat = GetCategory(bp, "PID", "CategoryName");

GetCategoryByID (Static Method)
This API will return a MetaCategory Object for a specified Meta Data Category identified by CATID.

Parameters
BP: The Process Director BP Object

PID: The Partition ID of the partition containing the Meta Data Category.

CATID: A string containing the Name or CATID of the Meta Data Category.

Developer's Reference Guide | 139



BP Logix Inc
Process Director Documentation

Returns
MetaCategory: A MetaCategory object.

Example

MetaCategory myCat = GetCategoryByID(bp, "PID", "CATID");

GetCategoryByName (Static Method)
This API will return a MetaCategory Object for a specified Meta Data Category identified by Category
Name.

Parameters
BP: The Process Director BP Object

PID: The Partition ID of the partition containing the Meta Data Category.

Name: A string containing the Name or Name of the Meta Data Category.

Returns
MetaCategory: A MetaCategory object.

Example

MetaCategory myCat = GetCategoryByName(bp, "PID", "CategoryName");

GetCategoryID (Static Method)
This API will accept either a Category name or CATID and return a string containing the CATID for the spe-
cified Category, or "" if the Category isn't found.

Parameters
BP: The Process Director BP Object

PID: The Partition ID of the partition containing the Meta Data Category.

CATID: A string containing the Name or CATID of the Meta Data Category.

Returns
String: The CATID for the specified Category, or "" if the Category isn't found.

Example

string myCat = GetCategoryID(bp, "PID", "CategoryName");

GetRootCategory (Static Method)
This API will return the root-level MetaCategory Object for a specified Partition.

Parameters
BP: The Process Director BP Object

PID: The Partition ID of the partition.

140 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
MetaCategory: A MetaCategory object.

Example

MetaCategory myCat = GetRootCategory (bp, "PID");

Partition Class
This object represents a Partition.

When developing Form scripts (in the various callback methods such as BP_Event), you are automatically
given an instance of the “current” Partition with the CurrentPartition variable.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

PID String The internal Partition ID

Name String The name of this partition

Description String The description of this partition

Methods
CreateFolder
This API will create a folder structure in a Partition

Parameters
PathName: The complete path of the folder structure to create.

Returns
Folder: The folder object created.

Example

var NewFolder = CurrentPartition.CreateFolder("/folder1/folder2");

GetDataSources
This API will return a list of DataSource objects.

Parameters
none

Returns
List< DataSource>: A list of DataSource objects.

Example

var DataSources = CurrentPartition.GetDataSources();

Developer's Reference Guide | 141



BP Logix Inc
Process Director Documentation

GetPartition (Static Method)
This API will get a partition from either a name or ID. This is an overloaded method with the following pos-
sible declarations:
public static string GetPartitionID(bp BP, string PID)

public static Partition GetPartition(bp BP, string PartitionID)

public static Partition GetPartitionByID(bp BP, string PartitionID)

Parameters
BP: The bp environment.

PartitionID: The Name or ID of the partition to retrieve.

PID: String partition ID of the partition to retrieve.

Returns
Partition: Will return null if partition isn't found.

Example

var oPartition = Partition.GetPartition(bp, "PID");

GetPartitionByID (Static Method)
This API will get a partition object from the specified ID.

Parameters
BP: The bp environment.

PID: The ID of the partition to retrieve.

Returns
Partition: Will return null if partition isn't found.

Example

// Normally not used directly
var oPartition = Partition.GetPartitionByID(bp, "PID");

GetPartitionByName (Static Method)
This API will get a partition object from the specified Partition Name.

Parameters
BP: The bp environment.

PartitionName: The ID of the partition to retrieve.

Returns
Partition: Will return null if partition isn't found.

Example

var oPartition = Partition.GetPartitionByName(bp, "PartitionName");

142 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

GetPartitionID (Static Method)
This API will get a partition ID from the specified Partition Name.

Parameters
BP: The bp environment.

PID: The Name or ID of the partition to retrieve.

Returns
String: The ID of the Partition or “” if not found.

Example

Var oPID = Partition.GetPartitionID(bp, "PartitionName");

GetRootFolder
This API will return the ContentObject of the root folder for the partition

Parameters
none

Returns
ContentObject: The root folder ContentObject or null if the operation fails.

Example

var RootFolder = CurrentPartition.GetRootFolder();

PDF Class
This object represents a PDF document object.

Methods
CreatePDFForDocument (Static Method)
Creates a reviewable PDF for a specified document. This is an overloaded method with the following pos-
sible declarations:
public static bool CreatePDFForDocument(bp BP, Document Document)

public static bool CreatePDFForDocument (bp BP, Document Document,
                                        bool OnlyIfNeeded)

Parameters
BP: The BP Logix Object.

pDocument: The Document object to convert to PDF.

OnlyIfNeeded: Booloean flag to instruct the system to only create the conversion if needed, i.e., If there is
already a web viewable object and you only want to convert documents without an existing PDF object.

Returns
Boolean: Returns false if the operation fails.

Developer's Reference Guide | 143



BP Logix Inc
Process Director Documentation

Example

var oDocument = Document.GetDocumentbyDID(bp, "DID");
CreatePDFForDocument(bp, oDocument);

CreatePDFFromDoc (Static Method)
Creates a PDF file from a specified document.

Parameters
BP: The BP Logix Object.

WordPath: String file path where the Word document is stored.

PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromDocument(bp, "C://File/Path/DocumentName.docx", "C://File/Path/Docu-
mentName.pdf");

CreatePDFFromDocument (Static Method)
Creates a PDF file from a specified document.

Parameters
BP: The BP Logix Object.

Document: The Document object to convert to PDF.

PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

var oDocument = Document.GetDocumentbyDID(bp, "DID");
CreatePDFFromDocument(bp, oDocument, "C://File/Path/DocumentName.pdf");

CreatePDFFromForm (Static Method)
Creates a PDF file from a specified Form.

Parameters
BP: The BP Logix Object.

FORMINSTID: The string ID of the Form instance.

PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

144 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

CreatePDFFromForm(bp, "FORMINSTID",
    "C://File/Path/DocumentName.pdf");

CreatePDFFromImage (Static Method)
Creates a PDF file from a specified image file. Valid Image formats include GIF, JPG, and PNG.

Parameters
BP: The BP Logix Object.

ImagePath: The string file path to the location of the image to convert.

PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromImage(bp, "C://File/Path/ImageName.png",
    "C://File/Path/DocumentName.pdf");

CreatePDFFromRoutingSlip (Static Method)
Creates a PDF file from a Routing Slip for a specified process.

Parameters
BP: The BP Logix Object.

PROCINSTID: The string ID of the Process instance.

PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromRoutingSlip(bp, "FORMINSTID",
    "C://File/Path/DocumentName.pdf");

CreatePDFFromString (Static Method)
Creates a PDF file from a given text string.

Parameters
BP: The BP Logix Object.

Text: The string to convert.

PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Developer's Reference Guide | 145



BP Logix Inc
Process Director Documentation

Example

// Create the string to convert
StringBuilder sb = new StringBuilder();
sb.Append("This is the string. ");
sb.Append("This string will be converted to PDF.");

// Convert the string to PDF
CreatePDFFromString(bp, sb.ToString(),
    "C://File/Path/DocumentName.pdf");

CreatePDFFromTextFile (Static Method)
Creates a PDF file from a specified text file.

Parameters
BP: The BP Logix Object.

TextPath: The string file path to the location of the text file to convert.

PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromTextFile(bp, "C://File/Path/textfile.txt",
    "C://File/Path/DocumentName.pdf");

CreatePDFFromURL (Static Method)
Creates a PDF file from a web page displayed at a specified URL.

Parameters
BP: The BP Logix Object.

TextPath: The string file path to the location of the text file to convert.

URL: String containing the fully qualified URL of a web page/document.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromURL(bp, "http://www.domain.com/folder/page.htm",
    "C://File/Path/DocumentName.pdf");

GetFormFields (Static Method)
Retrieves all of the form fields from a PDF document.

Parameters
BP: The BP Logix Object.

PDFPath: The string file path to the location of the PDF file.

146 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

(out) pFormFieldNames: List object that will contain the returned PDF form fields.

Returns
Boolean: Returns false if the operation fails.

List: The List object containing all of the form fields in the PDF document.

Example

//The list to store the controls
List<string> myControls = new List<string>();

//Get the form fields to fill the list
GetFormFields(bp, "C://File/Path/DocumentName.pdf", myControls);

MergePDFs (Static Method)
Merges multiple PDF files into a single PDF file. This is an overloaded method with the following possible
declarations:
public static bool MergePDFs (bp BP, IEnumerable<string> InputPDFPaths,
                             string OutputPDFPath)

public static bool MergePDFs (bp BP, IEnumerable<string> InputPDFPaths,
                             string OutputPDFPath, bool DeleteInputs)

Parameters
BP: The BP Logix Object.

InputPDFPaths: The IEnumerable object, such as a List, that contains the file paths of the PDF files to
merge.

OutputPDFPath: The file path for the location of the merged PDF.

DeleteInputs: Booloean flag to instruct the system to delete the original PDF files after they have been
merged.

Returns
Boolean: Returns false if the operation fails.

Example

// The list to store the PDF locations
List<string> MyFiles = new List<string>();
MyFiles.Add("C://File/Path/Document1Name.pdf");
MyFiles.Add("C://File/Path/Document2Name.pdf");

// Merge the PDFs
MergePDFs(bp, MyFiles, "C://File/Path/MergedDocumentName.pdf");

SetFormFields (Static Method)
Sets all of the form fields in a specified PDF document.

Parameters
BP: The BP Logix Object.

PDFPath: The string file path to the location of the PDF file.

Developer's Reference Guide | 147



BP Logix Inc
Process Director Documentation

FieldNameValues: Dictionary object that will contain field Name/Value pairs to fill out a PDF Form.

TemplatePDFPath: String file path of the Template PDF containing the form fields.

OutputPDFPath: String file path of the PDF output file containing the completed form after the values
are entered.

Returns
Boolean: Returns false if the operation fails.

List: The List object containing all of the form fields in the PDF document.

Example

// The Dictionary to store the controls
Dictionary<string, string> myFields = new Dictionary<string, string>();
myFields.Add("Field1", "Value1");
myFields.Add("Field2", "Value2");
myFields.Add("Field3", "Value3");

// Create the filled PDF form from the template
SetFormFields(bp, myFields, "C://File/Path/Template.pdf",
    "C://File/Path/Output.pdf");

Process Class
This object represents a Process (definition and/or instance).

This object is derived from the ContentObject class. All properties and methods from the ContentObject
are supported for this object, plus the properties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Attachments List Object Attached files or documents for the process,
returned as a List<Document Object>.

DefaultForm Form Object Default form definition for the process

DefaultFORMINSTID String Default form instance ID for the process

DueTime DateTime The date/time the process instance is due

EndTime DateTime The date/time the process instance ended

Error Boolean Whether the process is in an error state

Initiator User Object Process initiator

InstanceName DefaultForm Name of the process instance

InstanceObject Content List
Object

The optional content object of this process
instance

InstID String ID of the process instance

ParentInstanceObject Content List
Object

The optional content object of the parent pro-
cess instance

148 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

Priority Integer The priority of the process instance

RunningTasks List Object List of running tasks in the process, returned as
List<Task>

StartTime DateTime The date/time the process instance started

Status Integer Status of the process instance, specified in the
nStatus field of tblProjectInstance. Please see
the table definition of tblProjectInstance for
status codes.

TermReason Integer If the process instance has ended, the reason.
Please see the Classes topic for a list of ter-
mination reasons and their associated integer
code.

Methods
AddToProcess
Adds a ContentObject object to a Process. This is an overloaded method with the following possible
declarations:
public bool AddToProcess(ContentObject pObj)

public bool AddToProcess(ContentObject pObj, string pGroup)

public bool AddToProcess(string pID)

public bool AddToProcess(string pID, string pGroup)

public bool AddToProcess(string pID, ObjectType pType)

public bool AddToProcess(string pID, ObjectType pType, string pGroup)

Parameters
pObj: A Process Director ContentObject object.

pGroup: The string name of a Group to which the object should be added.

pID: The string ID of the Object.

pType: The ObjectType of the Object to be added.

Returns
Boolean: True if the operation succeeds.

Example

// Set the Process and content object
var oProcess = Project.GetProcessByID(bp, "PRID");
var oObject = Form.GetFormByFORMID("FORMID");

// Add the object to the process
oProcess.AddToProcess(oObject);

Developer's Reference Guide | 149

Table Definitions.htm


BP Logix Inc
Process Director Documentation

Cancel
This API will cancel a running Process Instance.

Parameters
None.

Returns
Boolean: True if operation succeeds

Example

var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
oProcessInst.Cancel();

CheckForAdvance
This API call will force the internal logic for checking for notifications that need to be sent out and steps
that need to be transitioned.

Parameters
None

Returns
None

Examples

var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
bp.log0(oProcessInst.CheckForAdvance());

ConvertSysVarsInString (Static Method)
This API converts system variables in a string.

Parameters
String: The string in which to find the system variables.

pDefaultEncode: The BP SysVar Encode method.

Returns
String: The resultant string after converting every system variable.

Examples

var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
bp.log0(oProcessInst.ConvertSysVarsInString("Created on {CREATE_DATE}"));

GetChildren
This API will get all children of the Process Instance.

Parameters
ObjectType: Optional filter of object types to return.

150 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

MapType: Optional filter of map types to return.

GroupName: Optional filter of items in a Group to return.

Returns
List<ContentObject>: List of ContentObjects or null if the operation fails.

Example

var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
// Gets all items in the group named “Group 1”
var MyChildren = oProcessInst.GetChildren("Group 1");

GetProcessByID
This API will return a process object from the specified ID.

Parameters
BP: The bp environment.

pID: The ID of the object to retrieve.

Returns
ProcessObject: Will return null if object isn't found.

Example

// Normally not used directly
var oObject = Project.GetProcessByID(bp, "PRID" );

GetProcessByInstID
This API will return a process object from the specified ID.

Parameters
BP: The bp environment.

pInstID: The ID of the process instance object to retrieve.

Returns
ProcessInstanceObject: Will return null if object isn't found.

Example

// Normally not used directly
var oObject = Process.GetProcessByInstID(bp, "PRINSTID" );

GetSubProcesses
This API will return all sub-processes.

Parameters
None

Developer's Reference Guide | 151



BP Logix Inc
Process Director Documentation

Returns
Process: List of sub processes.

Example

var SubProcess = CurrentProject.GetSubProcesses();
foreach (var sub in SubProcess)
{

bp.log0("Sub process: " + sub.Name);
}

GetTaskByName
This API will get the specified ProcessTask.

Parameters
pTaskName: The name of the Process Task to get.

Returns
ProcessTask: The actual ProcessTask or null if the operation fails.

Example

var oProcess = Project.GetProcessByID(bp, "PRID");
var Approve = oProcess.GetTaskByName("TaskName");

Instantiate
This API will write the instantiate a Process Definition. After instantiating the Process, you can optionally
add items to the Process Instance (using Add). Finally, you must call the Start method to actually run the
instantiated Process. This is an overloaded method with the following possible declarations:
public bool Instantiate()

public bool Instantiate(Process procParent)

public bool Instantiate(string InitiatorUID)

public bool Instantiate(string InitiatorUID, Process procParent)

Parameters
procParent: The name of the Process Task to get.

InitatorUID: The User ID of the process initiator.

Returns
Boolean: True if the operation succeeds.

Example

var oProcess = Project.GetProcessByID(bp, "PRID");
oProcess.Instantiate();
// Add items to Timeline package here
oProcess.Start();

PostEvent

152 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This API will post an event to a process. This is an overloaded method with the following possible declar-
ations:

public static bool PostEvent(bp BP, string PRINSTID, string EventName)

public virtual bool PostEvent(string EventName)

Parameters
BP: The BP Logix environment.

PRINSTID: The ProcessInstanceID of the process.

EventName: The string name of the event to post.

Returns
Boolean: True if the operation succeeds.

Example

PostEvent(bp, "PRID", "EventName");

RecalcInstanceName
This API will generate a new name for a specific Process Instance object.

Parameters
None.

Returns
None.

Example

// Re-generates the name of the Process Instance
var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
oProcessInst.RecalcInstanceName();

ReStart
This API will start a Process instance which has previously completed. You can optionally pass the Pro-
cessTask or TASKID of the step to start. If neither is passed, the Process will restart at the beginning. This
is an overloaded method with the following possible declarations:
public bool ReStart()

public bool ReStart(string pTASKID)

public bool ReStart(ProcessTask pTask)

Parameters
pTaskID: The string ID of the task to restart.

pTask: The actual task object to restart.

Returns
Boolean: True if the operation succeeds.

Developer's Reference Guide | 153



BP Logix Inc
Process Director Documentation

Example

// Restarts the Process instance
var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
oProcessInst.ReStart();

Run
This API will instantiate and start a process definition in one step. You can optionally add a single item to
the Process. This is an overloaded method with the following possible declarations:
public bool Run()

public bool Run(string pID, ObjectType pType)

public bool Run(string pID, ObjectType pType, string pGroup)

public bool Run(ContentObject pObj)

public bool Run(ContentObject pObj, string pGroup)

Parameters
Group: Optional Group of the object to add to the process.

pID: Optional ID of the object to add to the process.

pObj: Optional ContentObject to run.

pType: Optional Type of the object to add to the process.

Returns
Boolean: True if the operation succeeds.

Example

var oProcess = Project.GetProcessByID(bp, "PRID");
oProcess.Run();

SetCurrentFormInstance
This API will set the current Form Instance (the default Form Instance which will be used to complete
tasks) for a Process Instance. The Process must already contain a reference to the Form Instance. This is
an overloaded method with the following possible declarations:
public bool SetCurrentFormInstance(ContentObject pObj)

public bool SetCurrentFormInstance(string pFORMINSTID)

Parameters
FORMINSTID: The form instance ID to make the current.

pObj: The ContentObject to make current.

Returns
Boolean: True if the operation succeeds.

154 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

// Set the specified form instance as the current form instance
var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
oProcessInst.SetCurrentFormInstance("FORMINSTID");

SetPriority
This API will set the priority of a Process Instance.

Parameters
pPriority: The integer priority to set.

Returns
Boolean: True if the operation succeeds.

Example

var oProcessInst = Process.GetProcessByInstID("PRINSTID");
oProcessInst.SetPriority(1);

Start
This API will start a Process that has previously been instantiated.

Parameters
None.

Returns
Boolean: True if the operation succeeds.

Example

var oProcess = Project.GetProcessByID(bp, "PRID");
oProcess.Instantiate();
// Add items to process package here
oProcess.Start();

StartTask
This API will start a Timeline Activity in a running Process.

Parameters
RestartTask: An object variable of the ProcessTask type.

Returns
Boolean: True if the operation succeeds.

Examples
Project Timeline:

var oTask = CurrentProject.GetTaskByName("ActivityName");
CurrentProject.StartTask(oTask);

Developer's Reference Guide | 155



BP Logix Inc
Process Director Documentation

ProcessTask Class
This object represents a Process Task.

Properties
The ProcessTask Class is the base class for the WorkflowStep and ProjectActivity classes. It implements
the following properties.

PROPERTY NAME DATA TYPE DESCRIPTION

PROCID String The ID of the process

ID String The ID of the current Process Task

TASKID String The ID of the Process Task

Name String The name of the Process Task

Instructions String The instructions for users in this Process Task

Description String The description of this Process Task

PROCINSTID String The ID of the process instance

TASKINSTID String The ID of the Process Task instance

ProcessInstance Process Instance
Object

The Process class for the Process Task

Users List Object The list of ProcessTaskUser representing the users in
this Process Task, returned as List<Users>

Status Integer The status of the step, specified in the nStatus field of
tblProjectInstance. Please see the table definition of
tblProjectInstance for status codes.

ReAuthenticate Boolean Boolean indicating whether reauthorization is required
for this process task.

Start DateTime The time the Timeline Activity started

End DateTime The time the Timeline Activity ended

Due DateTime The time the Timeline Activity is due

ShowSignatureComments Boolean Boolean indicating whether signature comments are
required to complete this process task.

AllowEmailComplete Boolean Boolean indicating whether this process task can be
completed by email

BaseForm For Object The base Form used by this Process Task

InstID String The ID of the Process Task instance

EndReason Integer The reason the Process task was terminated. Please
see the Classes topic for a list of termination reasons

156 | Developer's Reference Guide

Table Definitions.htm


BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

and their associated integer code.

Duration Timespan The duration of the Process task

Results List Object Returns a List object containing the Process task res-
ults, returned as a List<String>

Methods
AddUsersToTask
This API will add users to a Process Task. This method can be declared using the following overloads:
public bool AddUsersToTask(params User[] pUsers)

public bool AddUsersToTask(IEnumerable<User> pUsers)

public bool AddUsersToTask(string pUIDList)

Parameters
pUsers: A list of IEnumerable<User> or params objects to add.

pUIDList: A string of UIDs to add (separated by commas).

Returns
Boolean: True if the operation succeeds.

Example

// Add the process initiator to the current Process Step
    bool bAddUsers =
    CurrentProcessTask.AddUsersToTask(CurrentProject.Initiator);

CancelTask
This API will set the message property of the Process Task.

Parameters
CancelUID: A string containing the UID of the user for whom to cancel the Process Task.

CancelComments: An string value containing the cancellation comments.

Returns
Boolean: True if the operation succeeds.

Example

// Set the message of the Process Task
bool bCancel = CurrentProcessTask.CancelTask("USERUID",

"This is unnecessary");

GetProcessTaskByTASKINSTID (Static Method)
This API will get a Process Task instance object from the specified ID.

Developer's Reference Guide | 157



BP Logix Inc
Process Director Documentation

Parameters
BP: The bp environment.

TASKINSTID: The ID of the Process Task instance to retrieve.

Returns
ProcessTask: Will return null if Process Task isn't found.

Example

// Normally not used directly
var oTaskInst = ProcessTask.GetProcessTaskByTASKINSTID( bp, "TASKINSTID" );

GetProcessTaskByTASKID (Static Method)
This API will get a Process Task definition object from the specified ID.

Parameters
BP: The bp environment.

TASKID: The ID of the Process Task to retrieve.

Returns
ProcessTask: Will return null if Process Task isn't found.

Example

// Normally not used directly
var oTaskDef = ProcessTask.GetProcessTaskByTASKID( bp, "TASKID" );

GetProcessTasksByPRID (Static Method)
This API will return a list of Process Tasks for a specified process when given a Process ID as a parameter.

Parameters
BP: The BP Logix environment.

pRID: The Process ID of the Process to retrieve.

Returns
List<ProcessTask>: A list object of the Tasks in the specified Process, or null if not found.

Example

// Normally not used directly
var oTasks = ProcessTask.GetProcessTasksByPRID( bp, "PRID" );

GetTaskByName (Static Method)
This API will get a Process Task object from the specified Name.

Parameters
BP: The BP Logix environment.

Process: The Process object.

158 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

TaskName: The name of the Task to get.

Returns
ProcessTask: Will return null if Process Task isn't found.

Example

var oObject = Project.GetProcessByID(bp, "PRID" );
var oTask =
    ProcessTask.GetTaskByName( bp, oObject , "Approve Doc" );

RemoveUsersFromTask
This API will remove users from a process task. This is an overloaded method with the following possible
declarations:
public bool RemoveUsersFromTask(params User[] pUsers)

public bool RemoveUsersFromTask(IEnumerable<User> pUsers)

public bool RemoveUsersFromTask(string pUIDList)

Parameters
pUsers: A list of IEnumerable<User> or params objects to add.

UIDList: A string of UIDs to add (separated by commas).

Returns
Boolean: True if operation succeeds.

Example

// Remove the process initiator from the current Activity
CurrentProjectActivity.RemoveUsersFromTask(CurrentProject.Initiator);

ResendTaskEmails
This API will resend the task email to all task users.

Parameters
UIDAdmin: Optional string parameter of the user you want to associate with the resend in the audit logs.

Comments: The optional string comments for a completed task.

Returns
ProcessTask: The ProcessTask object or null if the operation fails.

Example

ProcessTask.ResendTaskEmails("UIDAdmin", "Comments");

Restart
This API will restart a specified task. This is an overloaded method with the following possible declar-
ations:
public bool Restart()

Developer's Reference Guide | 159



BP Logix Inc
Process Director Documentation

public bool Restart(string UID, string Comments)

Parameters
UID: The UID string value of the user for whom the task should be restarted.

Comments: A string containing comments to append to the task that is restarted.

Returns
Returns 'true" if the operation succeeds.

Example

// Restart the Process Task
bool bRestart = CurrentProcessTask.Restart();

SetDueDate
This API will set the Due Date of a Process Task.

Parameters
DUEDATE: The date to set.

Returns
Boolean: True if the operation succeeds.

Example

// Set DueDate of current Activity
CurrentProjectActivity.SetDueDate(DateTime.Now.AddHours(2));

SetDuration
This API will set the Duration of a Timeline-based Process Task.

Parameters
SECONDS: The number of seconds to set the duration to. Set to 0 to have the system automatically cal-
culate the duration.

Returns
Boolean: True if the operation succeeds.
Example

// Set duration of current Activity
CurrentProjectActivity.SetDuration(10000);

SetError
This API will set the message property of the Process Task. This is an overloaded method with the fol-
lowing possible declarations:
public bool SetError(string pFormat, params object[] pParams)

public bool SetError(string strError, bool prepend)

160 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Parameters
pFormat: A format string for the error message.

pParams: An params object containing a list of message parameters.

strError: A string value containing the error message to apply to the Process Task.

Prepend: A Boolean value signifying whether the error message should be prepended to an existing mes-
sage, or replace the existing message.

Returns
Boolean: True if the operation succeeds.

Example

// Set the error message to display
bool bError = CurrentProcessTask.SetError("Error Message", true);

SetMessage
This API will set the message property of the Process Task. This is an overloaded method with the fol-
lowing possible declarations:
public bool SetMessage (string pFormat, params object [] pParams)
public bool SetMessage(string strMessage, bool prepend)

Parameters
pFormat: A formatting string.

pParams: A paramsobject containing a list of message parameters.

strMessage: A string value containing the message to apply to the Process Task.

Prepend: A Boolean value determining whether the message should be prepended to an existing message,
or replace the existing message.

Returns
Boolean: True if the operation succeeds.

Example

// Set the message of the Process Task
bool bMessage = CurrentProcessTask.SetMessage("Message text", true);

ProcessTaskUser Class
This object represents a user in a Process Task.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Comment String The optional comments if the user completed
this Task

Developer's Reference Guide | 161



BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

End DateTime The time that the user completed this Task

ProcessInstance Process Instance
Object

The Process Instance object for the Process con-
taining this Task User

ProcessTaskInstance Process Task
Instance Object

The Process Task Instance object for the Task
containing this Task User

PROCID String The ID of the Process Definition

Start DateTime The time that the user started in this Task

Status Integer The status of this user in this Process Task.
Please see the table definition of tblPro-
jActivityUserInst for status codes.

SubTaskName String The optional name of the sub task assigned to
this Task User

TASKID String The ID of the Process Task

TASKINSTID String The ID of the Task Instance

TASKUID String The ID of the Process Task User

TASKUINSTID String The ID of the Task User Instance

TermReason Integer The termination reason for this user in this
Task. Please see the Classes topic for a list of
termination reasons and their associated
integer code.

TLID String The optional task list ID

User User Object The user object

Methods
CancelUser
This API will cancel the task for the particular user which this object represents. This is an overloaded
method with the following possible declarations:
public bool CancelUser()

public bool CancelUser(string Comments)

public bool CancelUser(string Comments, string UIDAdmin)

Parameters
Comments: (optional) Comments to add to the completion action.

UIDAdmin: (optional) The UID of the (administrative) User who authorized the Task’s cancellation.

Returns
Boolean: True if the operation succeeds.

162 | Developer's Reference Guide

Table Definitions.htm


BP Logix Inc
Process Director Documentation

Example

// Cancel the User's Task, adding a comment
CurrentProjectActivityUser.CancelUser("Programmatically canceling user");

CompleteUser
This API will complete the task for the particular user which this object represents. This is an overloaded
method with the following possible declarations:
public bool CompleteUser()

public bool CompleteUser(string Selection)

public bool CompleteUser(string Selection, string Comments)

Parameters
Selection: (optional) The branch to take on completion.

Comments: (optional) Comments to add to the completion action.

Returns
Boolean: True if the operation succeeds.

Example

// Complete the User's Task, taking the "Approve" branch
CurrentProjectActivityUser.CompleteUser("Approve");

ConvertSysVarsInString
This API will convert a SysVar string in the context of the ProcessTaskUser. This is an overloaded method
with the following possible declarations:
public virtual string ConvertSysVarsInString(string pString)

public virtual string ConvertSysVarsInString (string pString,
                                             bp.SysVarEncode pDefaultEncode)

Parameters
String: The SysVar string to convert.

pDefaultEncode: A BP SysVarEncode object that defines the encoding.

Returns
String: The expansion of the SysVar string

Example

// Create the string to append the current object name to the
// string "Name: "
var strNew =
    CurrentProjectActivityUser.ConvertSysVarsInString("Name: {OBJ_NAME}");

GetProcessTaskUserByTASKUID
This API will return a ProcessTaskUser for a Given TaskUserID.

Developer's Reference Guide | 163



BP Logix Inc
Process Director Documentation

Parameters
BP: The BP Logix environment.

pTASKUID: The string TaskUserID for the user.

Returns
ProcessTaskUser: The ProcessTaskUser object or null if the operation fails.

Example

var oUser = ProcessTaskUser.GetProcessTaskUserByTASKUID(bp, "TASKUID");

GetProcessTaskUserByTASKUINSTID
This API will return a ProcessTaskUser for a Given TaskUserInstanceID.

Parameters
BP: The BP Logix environment.

pTASKUINSTID: The string TaskUserInstanceID for the user.

Returns
ProcessTaskUser: The ProcessTaskUser object or null if the operation fails.

Example

var oUser =
    ProcessTaskUser.GetProcessTaskUserByTASKUINSTID(bp, "TASKUINSTID");

ResendEmailForUserTask
This API will resend the task email to a specific user.

Parameters
UIDAdmin: Optional string parameter of the user you want to associate with the resend in the audit logs.

Comments: The optional string comments for a completed task.

Returns
ProcessTaskUser: The ProcessTaskUser object or null if the operation fails.

Example

var oUser =
    ProcessTaskUser.GetProcessTaskUserByTASKUINSTID(bp,
    "TASKUINSTID");
oUSer.ResendEmailForUserTask("UIDAdmin", "Comments");

TaskUsersInTask (Static Method)
This API will return a collection of all Process Task User objects from the specified Task ID.

Parameters
BP: The bp environment.

164 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

TASKINSTID: The ID of the Process Task instance with the Process Task Users to retrieve.

Returns
IEnumerable<ProcessTaskUser>: The list of Process Task User objects for the particular Task.

Example

// Normally not used directly
var TaskUsers = ProcessTaskUser.TaskUsersInTask(bp, "TASKINSTID");

Project (Process Timeline) Class
This class defines a Process Timeline object (definition or instance).

When developing Form scripts or Timeline scripts, you are automatically given an instance of the current
Process Timeline with the CurrentProject variable.

This object extends the Process class, which, in turn, extends the ContentObject class. Thus all properties
and methods from the Process and ContentObject classes are available in the Project class, in addition to
those below.

Properties
PRID: The ID of the timeline definition.

PRINSTID: The ID of the timeline instance.

Methods
AddToProject
This method attaches an object to the process instance.

Parameters
ContentObject pObj: The content object to be attached to the project.

String pGroup (optional): The group name to use for the object.

String pID: The ID of the object to attach.

ObjectType pType (optional): The ObjectType of the attached object.

String pGroup (optional): The group name to use for the object.

Returns
Boolean: True if the operation succeeds.

Example

var oObject = Process.GetProcessByInstID(bp, "INSTID");
var document - Document.GetDocumentbyDID(bp, "DID");
bool success = oObject.AddToProject(document, "Group");

This method also has an overloaded method that can be called via the following parameters

GetActivityByName
This method returns a ProjectActivity object (Process Timeline Activity), given the name of the activity.

Developer's Reference Guide | 165



BP Logix Inc
Process Director Documentation

Parameters
String pActivity: Name of the requested activity.

Returns
ProjectActivity: The requested project activity.

Example

var oObject = Process.GetProcessByID(bp, "PID");
var someActivity = oObject.GetActivityByName("ActivityName");

GetProjectByPRID
This method returns a project object given the project’s ID.

Parameters
bp BP (only necessary if this is a static call): The bp environment.

String PRID: The ID of the timeline definition.

Example

var someProject = Project.GetProjectByPRID(bp, "PID");

Returns
Project: The project object with the specified ID.

GetProjectByPRINSTID
This method returns a project object given the project instance’s ID.

Parameters
String PRINSTID: The ID of the requested project instance.

Returns
Project: The project object whose instance ID matches the one requested.

Example

var someProject = Project.GetProjectByPRINSTID(bp, "PRINSTID");

PostEvent (static method)
This method posts an event to the specified project instance.

Parameters
bp BP: The bp environment.

String PRINSTID: ID of the project instance to post an event to.

String EventName: Name of the event to post.

Returns
Boolean: True if the operation succeeds.

166 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

bool success = Project.PostEvent(bp, "PRINSTID", "EventName");

Rollback
This method rolls a process back to a specified activity name.

Parameters
bp BP: The bp environment.

String ActivityName: The activity name to which to roll back the process.

Returns
Boolean: True if the operation succeeds.

Example

bool success = CurrentProject.Rollback(bp, “ActivityName”);

ProjectActivity Class
This object represents a Process Timeline Activity. It is derived from the ProcessTask Class and includes all
of its properties, plus the additional properties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ACTID String The ID of the Project activity

ACTINSTID String The ID of the Activity Instance

ActivityType Integer The type of activity, defined by the enum: pub-
lic enum ActivityType

Possible Activity Types are as follows:

VALUE EXPLANATION

0 Not set

1 User: Users are
assigned to activity

2 Notify: Notify users

3 Process: A Workflow
or Process Timeline is
run for this activity

4 Script: A script is run
for this activity

Developer's Reference Guide | 167



BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

VALUE EXPLANATION

5 Custom Task: A Cus-
tom Task is run for
this activity

6 Meta Data: Used to
set the package to
this meta data (with
some options to copy
form instance meta
data)

7 Form: Used to attach
a form and/or set the
current form viewer
for this project

8 Branch activity

9 Parent activity

10 End Timeline

11 Wait: Wait for time or
condition

ActName String The name of the Project Activity

PRID String The ID of the Project Definition

PRINSTID String The Project Instance ID

Methods
GetProjectActivityByACTID
This API will get a Project/Timeline Activity object from the specified instance ID.

Parameters
BP: The bp environment.

ACTID: The ID of the Project Activity to retrieve.

Returns
ProjectActivity: Will return null if the activity instance isn't found.

Example

// Normally not used directly
var oProjectActivity =
    ProjectActivity.GetProjectActivityByACTID (bp, "ACTID");

168 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

GetProjectActivityByACTINSTID
This API will get a Project/Timeline Activity instance object from the specified instance ID.

Parameters
BP: The bp environment.

ACTINSTID: The ID of the Project Activity instance to retrieve.

Returns
ActivityInstance: Will return null if the activity instance isn't found.
Example

// Normally not used directly
var oProjectActivityInst =
    ProjectActivity.GetProjectActivityByACTINSTID (bp, "ACTINSTID");

GetProjectActivityByName
This API will get a Project/Timeline Activity object from the specified Name.

Parameters
BP: The bp environment.

ActivityName: The string name of the Project Activity to retrieve.

Returns
ProjectActivity: Will return null if the activity instance isn't found.

Example

// Normally not used directly
var oProjectActivity =
    ProjectActivity.GetProjectActivityByName (bp, "ActivityName");

Restart
This API will restart a Timeline Activity.

Parameters
None.

Returns
Returns 'true" if the operation succeeds.

Example

// Restart the Process Task
bool bRestart = CurrentActivity.Restart();

SetInstanceOwnerDelegate
This method enables the Owner Shared Delegate to be changed on a running activity instance.

Developer's Reference Guide | 169



BP Logix Inc
Process Director Documentation

Parameters
String pActivityName: The activity name to which to set the Delegation Owner(s).

String pNewOwnerUIDs: A comma-separated list of UIDs to set the new owner (s) of the delegation
instance.

Returns
Boolean: True if the operation succeeds.

Example

bool success = SetInstanceOwnerDelegate("Activity Name", "UID1,UID2,UID3");

ProjectActivityUser Class
This object represents a user in a Process Timeline Activity (Process Task).

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ACTID String The ID of the Project activity

ACTINSTID String The ID of the Activity Instance

ACTUID String The ID of the Activity User

ACTUINSTID String The ID of the Activity User Instance

IconNumber String The icon associated with the chosen result

PRID String The ID of the Project Definition

PRINSTID String The Project Instance ID

ResultName String Result of the activity

RTID String ID of the activity result

SubTaskName String The optional name of the sub task assigned to
this Task User

Methods
CancelUser
This API will cancel the task for the particular user which this object represents

Parameters
Comments: (optional) Comments to add to the completion action.

Admin: (optional) The UID of the (administrative) User who authorized the Task’s cancellation.

Returns
Boolean: True if the operation succeeds.

170 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

// Cancel the User's Task, adding a comment
CurrentProjectActivityUser.CancelUser("Programmatically canceling user");

CompleteUser
This API will complete the task for the particular user which this object represents

Parameters
Selection: (optional) The branch to take on completion.

Comments: (optional) Comments to add to the completion action.

Returns
Boolean: True if the operation succeeds.

Example

// Complete the User's Task, taking the "Approve" branch
CurrentProjectActivityUser.CompleteUser("Approve");

ConvertSysVarsInString
This API will convert a SysVar string in the context of the ProcessTaskUser.

Parameters
String: The SysVar string to convert.

Returns
String: The expansion of the SysVar string.

Example

// Create the string to append the current object name to the
// string "Name: "
var strNew =
    CurrentProjectActivityUser.ConvertSysVarsInString("Name: {OBJ_NAME}");

Report Class
This object represents a Report object. It is available only to installations that use the Advanced Report-
ing component

Methods
ExportReport
Exports a report to a file. This is an overloaded method with the following possible declarations:

public static bool ExportReport (bp BP, string RID,
                                string ExportName,
                                string ContentParentID,
                                string ContentFolderPath,
                                string LocalFolderPath)

Developer's Reference Guide | 171



BP Logix Inc
Process Director Documentation

public static bool ExportReport (bp BP, string RID,
                                string ExportName,
                                string ContentParentID,
                                string ContentFolderPath,

string LocalFolderPath,
                                List<NameValue> Variables)

Parameters
BP: The BP Logix Object.

RID: The string value of the Report ID.

ExportName: The String name of the exported report.

ContentParentID: The string value of the Content ID of the report's parent object.

ContentFolderPath: The string value of the Report's content path in Process Director.

LocalFolderPath: The string value of the local file path where the exported report will be saved.

Variables: A List object containing the required report variables.

Returns
Boolean: True of the operation succeeds.

Example

bool rExport = ExportReport(bp, "ReportID", "ReportName",
    "ContentParentID", "Partition\Reports\Path",
    "C:\\File\Path")

Rule Class
This object represents a Business Rule.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Group String The string Group name of the Business Rule.

In addition to Properties, Business Rules use the SystemVariableContext object to specify the various con-
text properties for the Business Rule. Please see the SystemVariableContext topic for more information.

Methods
Evaluate
This API will call the evaluation of the Business Rule, returning the appropriate data for that rule. This is
an overloaded method with the following possible declarations:
public string Evaluate()

public string Evaluate(IEnumerable<NameValue> Variables)

public string Evaluate(SysVarClass.IContextReadonly Context)

public string Evaluate(SystemVariableContextReadonly Context)

172 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

public string Evaluate (SystemVariableContextReadonly Context,
    IEnumerable<NameValue> Variables)

Parameters
Variables: An IEnumerable object containing the variables to pass to the Business Rule.

Context: A SystemVariableContext object containing the context settings for the Business Rule.

Returns
String: The result of the Business Rule's evaluation.

Example

var oRule = Rule.GetRuleByID(bp, "RULEID");
string result = oRule.Evaluate();

GetRuleByID (Static Method)
This API will get a Business Rule object from the specified ID.

Parameters
BP: The bp environment.

RuleID: The string ID of the partition to retrieve.

Returns
Rule Object: Will return null if the Business Rule isn't found.

Example

// Normally not used directly
var oRule = Rule.GetRuleByID(bp, "RULEID");

GetRuleByName (Static Method)
This API will return a Business Rule object from the specified Rule Name. This is an overloaded method
with the following possible declarations:
public static Rule GetRuleByName(bp BP, string PID, string RuleName)

public static Rule GetRuleByName(bp BP, string PID, string RuleName, string Group)

Parameters
BP: The bp environment.

PID: The ID of the partition on which the Business Rule is located.

RuleName: The string name of the Business Rule.

Group: The string Group name of the Business Rule.

Returns
Rule: Will return null if partition isn't found.

Example

var oRule = Rule.GetRuleByName(bp, "PartitionID", "RuleName");

Developer's Reference Guide | 173



BP Logix Inc
Process Director Documentation

SetRuleGroup
This API will set a Group name for a Business Rule object.

Parameters
Group: The string Group name to set.

Returns
Rule Object: Will return null if the Business Rule isn't found.

Example

// Normally not used directly
var oRule = Rule.GetRuleByID(bp, "RULEID");
oRule.SetRuleGroup("GroupName");

SystemVariable Class
This object represents a SystemVariable object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Type Code Enum An enumerated System Variable type.

Data DataItem Object A DataItem object containing the System Vari-
able's data.

Parameters Collections Object A Collections object containing the Parameters
for the System Variable.

In addition to Properties, System Variables use the SystemVariableContext object to specify the various
context properties for the System Variable. Please see the SystemVariableContext topic for more inform-
ation.

Methods
Copy
This API will create a copy of a System Variable.

Parameters
None

Returns
Rule Object: Will return a new copy of the specified System variable.

174 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

var sv = new SystemVariable(bp.eSysVar.FormField,
    new DataItem(FormEnums.eDataType.String)

{ String = "UserPicker1" });
sv.Parameters["format"] = "UID";
var sEval = sv.Copy();

Evaluate
This API will call the evaluation of the System Variable.

Parameters
Context: A SystemVariableContext object containing the context settings for the Condition Set.

Returns
String: The result of the System Variable's evaluation.

Example

var sv = new SystemVariable(bp.eSysVar.FormField,
    new DataItem(FormEnums.eDataType.String)

{ String = "UserPicker1" });
sv.Parameters["format"] = "UID";
var sEval = sv.Evaluate();

SystemVariableContext Class
This object represents a SystemVariableContext object that contains the context properties for a System
Variable or other object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Object ContentList
object

A ContentObject object to assign as context

Form Form Object A Form object to assign as context

FormControl Form Control
Object

A FormControl object to assign as context

Process Process Object A Process object to assign as context

ProcessTask ProcessTask
Object

A ProcessTask object to assign as context

ProcessTaskUser ProcessTaskUser
Object

A ProcessTaskUser object to assign as context

User User Object A User object to assign as context

Developer's Reference Guide | 175



BP Logix Inc
Process Director Documentation

Methods
This class has no methods to call. This class merely stores the context property for a declared Sys-
temVariableContext object. Once the object is declared and properties set, the object can be used to set
the context for another Process Director object, such as a Business Rule.
Example

// Declare the context object
SystemVariableContext mycontext = new SystemVariableContext();

// Set the context Properties
mycontext.Form = Form.GetFormByFORMID(bp, "FORMID");
mycontext.ProcessTaskUser = ProcessTaskUser.GetProcessTaskUserByTASKUID(bp,
"TASKUID");

// Specify a Business Rule to call and apply the context for evaluation
var oRule = Rule.GetRuleByID(bp, "RULEID");
string result = oRule.Evaluate(mycontext);

Task Class
A Task object represents a task assigned to a user. It is distinct from a ProcessTask object, which rep-
resents a Process Timeline Activity or Workflow Step. A task object contains such information as the
name, description, instruction, and start and due dates of a task.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

UID String The UID of the user to whom this task is
assigned

FORMINSTID String The ID of the form instance this task is related
to

FORMID String The ID of the form related to this task

TLID String This task’s ID in the task list

PID String ID of the partition this task is on.

PROCINSTID String ID of the timeline or Workflow instance to
which this task belongs

TASKID String ID of the Workflow Step or Timeline Activity to
which this task belongs

TASKINSTID String ID of the Workflow Step or Timeline Activity
instance to which this task belongs

TASKUINSTID String ID of the Workflow user step or timeline user
activity instance to which this task belongs

tblTaskList Integer The database table row related to this task

176 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

TaskType Integer The type of this task. Please see the table defin-
ition of tblTaskList for Task Type codes.

Created DateTime The date and time this task was created

Due DateTime The date and time this task is due

URL String The URL of the Timeline Activity or Workflow
task

Methods
CancelTask
This function attempts to cancel the task, and returns a Boolean variable reflecting whether the can-
cellation succeeded.

Parameters
None

Returns
Boolean: True if the operation succeeds.

Example

Task myTask = GetTaskByTLID(bp, "TLID");
myTask.CancelTask();

CompleteTask
This function attempts to complete the task given the result, branch taken, or response for the task com-
pletion, as well as comments regarding its completion. It returns a Boolean reflecting whether the com-
pletion succeeded or not.

Parameters
Selection: The branch taken, response or result for the completion of the task.

Comments: Any comments regarding the completion of the task.

Returns
Boolean: True if the operation succeeds.

Example

// Approve the task and complete it
Task myTask = GetTaskByTLID(bp, "TLID");
myTask.CompleteTask("Approved", "Auto-approval via script");

GetTaskByTLID (Static Method)
This static function gets a task by the task list ID (TLID).

Developer's Reference Guide | 177

Table Definitions.htm
Table Definitions.htm


BP Logix Inc
Process Director Documentation

Parameters
BP: The bp environment.

TLID: The task list ID of the task being requested.

Returns
Task: The task whose TLID matches the one requested.

Example

Task myTask = Task.GetTaskByTLID(bp, "TLID");

GetTasksForEmail (Static Method)
This static function gets the tasks assigned to a user identified by email address. This is commonly used
for unauthenticated users, who are identified solely by email address, and who have no identity in Process
Director.

Parameters
BP: The bp environment.

PID or part (optional): The ID or partition object of the partition on which the tasks exist. Is set to null if
not specified.

Email: The email address of the user whose tasks are being requested.

Returns
List<Task>: A list of the tasks assigned to this user.

Example

List<Task> taskList = new List<Task>();
taskList = GetTasksForEmail(bp, "email@domain.com");

GetTasksForUser (Static Method)
This static function gets the tasks assigned to a specified user. This is an overloaded method with the fol-
lowing possible declarations:
public static List<Task> GetTasksForUser(bp BP, string PID, string UID)

public static List<Task> GetTasksForUser(bp BP, string UID)

public static List<Task> GetTasksForUser(bp BP, Partition part, User user)

Parameters
BP: The bp environment.

PID or part (optional): The ID or partition object of the partition on which the tasks exist. Is set to null if
not specified.

UID or user: The UID or user object of the user whose tasks are being requested.

Returns
List<Task>: A list of the tasks assigned to this user.

178 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

List<Task> taskList = new List<Task>();
taskList = GetTasksForUser(bp, "UID");

User Class
This object represents a user in a Form instance. An instance is a completed Form, or one that is currently
being edited.

When developing Form scripts (in the various callback methods such as BP_Event), you are automatically
given an instance of the “current” user with the CurrentUser variable.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

AuthType Code Enum The type of user.

User.eAuth is an enum which can return:
User.eAuth.Unknown,
User.eAuth.BuiltIn
User.eAuth.Windows
User.eAuth.Windows
User.eAuth.LDAP
User.eAuth.External
User.eAuth.SAML|
User.eAuth.Header

AutoDST Boolean Is DST enabled for user?

AvgLoginSeconds Integer The average number of seconds the user
remains logged in.

Company tblTaskList The optional company associated with this user

Culture tblTaskList A string value containing the User's culture
information derived from the .NET CultureInfo
Class.

CustomDate DateTime Optional custom date/time associated with user

CustomNumber Decimal Optional custom number associated with user

CustomString tblTaskList Optional custom string associated with user

CustomString2 tblTaskList Optional second custom string associated with
user

Delegate User Object A different user to which the user delegates (if
null, the user has no delegate)

Dept tblTaskList The optional department associated with this
user

Developer's Reference Guide | 179



BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

Description tblTaskList The optional description associated with this
user

Disabled Boolean A Boolean value that returns "true" if the user is
disabled.

DisplayString tblTaskList Returns either the UserName if configured, or
the UserID

Domain tblTaskList Optional domain if user is a Windows user

Email tblTaskList Email address of user

ExternalGUID tblTaskList The optional external unique ID associated with
this user

Groups List Object The list of groups to which the user belongs,
returned as List<Group>. If you need to check
whether a large number of users are in a spe-
cific group, it may be more efficient to use the
Group.HasUser() function.

ImpersonatedBy User Object If the user is being impersonated, this will be a
string containing the name of the imper-
sonating user.

LastActivity DateTime Timestamp of last activity for user

Locked Boolean A Boolean value that returns "true" if the user
account is locked.

NumLogins Integer The number of times the user has logged in.

Office String The optional office associated with this user

Phone String The optional phone number associated with this
user

SessionObjects Dictionary Object Returns a dictionary of attributes that can asso-
ciated with this user while logged in, returned
as a Dictionary<Key,Value>

Tasks List Object Returns the list of Tasks for the user, returned
as a List<task>

TimeZone String Time zone of user

Title String The optional title associated with this user

UID String The internal ID of the user

UserID String The unique string to identify the user

UserName String The "friendly" name of the user (for display)

180 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

// Setting a variable to the current username
var cUser = CurrentUser.UserName;

Methods
AddSharedDelegate
This method enables the ability to add or remove a UID from the list of shared delegate users for a user.

Parameters
pGrantAccessToUID: The UID to add to the shared delegation.

Returns
Boolean: True if the operation succeeds.

Example

// Add a user to shared delegation
CurrentUser.AddSharedDelegate("UID");

AddToGroup
This method adds the user to the specified group. This is an overloaded method with the following pos-
sible declarations:
public void AddToGroup(Group Group)

public void AddToGroup(string GID)

Parameters
GID: The ID of the group to which to add the user.

Group: The actual group object to which to add the user.

Returns
None

Example

var oUser = User.GetUserByUserID(bp, "UID");
var oGroup = Group.GetGroupByName(bp, "GroupName");

// The following two calls do the same thing (add "oUser" to "oGroup")
oUser.AddToGroup(oGroup); // Call with the Group object
oUser.AddToGroup(oGroup.GID; // Call with the Group ID

AddUserToPartition
This method adds the user to the specified partition.

Parameters
Partition: The Partition object to which to add the user.

Developer's Reference Guide | 181



BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.
Example

// Create a user, and force the user to change the password after login
var oUser = User.CreateUser(bp, "NewUID", "new@acme.com", "New User",
    "TEMP_PASSWORD",true);

// Add the new user to a partition
oUser.AddUserToPartition(Partition.GetPartition(bp, "Partition Name"));

AddUserToProfile
This method adds the user to the specified profile.

Parameters
Profile: The name of the profile to which to add the user.

Returns
Boolean: True if the operation succeeds.

Example

// Create a user, and force the user to change the password after login
var oUser = User.CreateUser(bp, "NewUID", "new@acme.com",
    "New User", "TEMP_PASSWORD",true);

// Add the new user to a profile
oUser.AddUserToProfile("ProfileName");

CreateUser (Static Method)
This method will create a user object for the specified ID.

Parameters
BP: The bp environment.

UserID: The User ID to create.

Email: The email address of the new user.

UserName: The name of the new user.

Password: The initial password of the new user.

MustChangePassword: If set to true, the new user must change the password after logging in.

AuthType: Added in v5.44.500, this parameter takes one of the User.eAuth enum types to specify the
authorization type for the user.

Returns
User: A user object representation of the new user.

182 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

// Create a user, and force the user to change the password after login
var oUser = User.CreateUser(bp, "NewUID", "new@acme.com",
    "New User", "Temp_Password", true);

CreateExternalUser (Static Method)
This method will create a user object for the specified ID. The user object is an external user which can
only be signed in via an external authentication system. This is an overloaded method with the following
possible declarations:
public static User CreateExternalUser (bp BP, string UserID,

string Email, string UserName)

public static User CreateExternalUser (bp BP, string UserID,
                                      string Email, string UserName,
                                       Defines.eAuth UserType)

public static User CreateExternalUser (bp BP, string UserID,
                                       string Email, string UserName,
                                       string GUID,

Defines.eAuth UserType)

public static User CreateExternalUser (bp BP, string UserID, string Email,
                                       string UserName, string GUID,
                                       string Domain,
                                       Defines.eAuth UserType)

Parameters
BP: The bp environment.

UserID: The User ID to create.

Email: The email address of the new user.

UserName: The name of the new user.

UserType: Optional type of user.

GUID: Optional Unique identifier for the user.

Returns
User: A user object representation of the new user.

Example

// Create a SAML user
var oUser = User.CreateExternalUser (bp, "NewUID", "new@acme.com",
"New User", User.eAuth.SAML);

DecodeLDAPName
This method will decode an LDAP name string to only return the "name" part. This is typically used for
groups.

Developer's Reference Guide | 183



BP Logix Inc
Process Director Documentation

Parameters
Name: The LDAP Name string.

Returns
String: The "name" portion of the LDAP string.

Example

string name = DecodeLDAPName("cn=ABC");

DelegateUser
This method enables a user to delegate all tasks.

Parameters
UID: The UID to delegate to.

Returns
Boolean: True if the operation succeeds.

Example

// Delegate current users tasks to another user
CurrentUser.DelegateUser("UID");

Delete
This method will remove the User from the system.

Parameters
None

Returns
None

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.Delete()

DeleteUser
This method will remove the User from the system.

BP Logix strongly recommends that users be disabled, not deleted. Deleting a user will delete
all of their system history as well, including all process partitipation.

Parameters
BP: The BP Logix environment.

UserUID: The User UID of the User to delete.

184 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

Example

bool deleted = DeleteUser(bp, "USERUID");

DisableUser
This method will disable the specified user's account and cancel the user in any active process tasks.

Parameters
None

Returns
Boolean: True of the operation succeeds.

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.DisableUser();

DisableUserEmail
This method will disable the ability to send email to a specified user.

Parameters
None

Returns
Boolean: True of the operation succeeds.

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.DisableUserEmail();

EnableUser
This method will enable a Process Director User. This is an overloaded method with the following possible
declarations:
public bool EnableUser()

public bool EnableUser(bool pEnable) [Deprecated]

Parameters
pEnable [Optional]: Setting this parameter to "True" will enable the user, and setting it to "False" will dis-
able the user. The method that uses this parameter has been deprecated, but remains in the product for
backward compatibility.

Returns
Boolean: True of the operation succeeds.

Developer's Reference Guide | 185



BP Logix Inc
Process Director Documentation

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.EnableUser();

EnableUserEmail
This method will enable the ability to send email to a specified user.

Parameters
None

Returns
Boolean: True of the operation succeeds.

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.EnableUserEmail();

GetAllUsers (Static Method)
This static method will get a list of all users on the system.

Parameters
BP: The bp environment.

Returns
List<User>: A list of all Users on the system.

Example

var allUsers = User.GetAllUsers(bp);

GetUserByEmail (Static Method)
This method will get a user object from the specified email address.

Parameters
BP: The bp environment.

UserEmail: The email address of the user to retrieve.

Returns
User: A user object representation of the user.

Example

var oUser = User.GetUserByEmail(bp, "jane@acme.com");

GetUserByExtID (Static Method)
This method will get a user object from the specified external ID. For instance, Active Director users user
the SID as the unique external identifier.

186 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Parameters
BP: The bp environment.

ExtID: The unique external ID of the user to retrieve.

Returns
User: A user object representation of the user.

Example

var oUser = User.GetUserByExtID (bp, userprincipal.Sid.ToString());

GetUserByID (Static Method)
This method will get a user object from the specified UserID.

Parameters
BP: The bp environment.

pUID: The UID of the user to retrieve. This is the internal ID used by Process Director.

Returns
User: A user object representation of the user.

Example

// Normally not used directly
var oUser = User.GetUserByID(bp, "UID");

GetUserByUserID (Static Method)
This method will get a user object from the specified ID. This is an overloaded method with the following
possible declarations:
public static User GetUserByUserID(bp BP, string pUserID)

public static User GetUserByUserID (bp BP, string pUserID,
                                   Defines.eAuth AuthType)

Parameters
BP: The bp environment.

pUserID: The ID of the user to retrieve.

AuthType: An optional Defines.eAuth object that defines the user's authorizations, i.e. User-
.eAuth.Windows, User.eAuth.BuiltIn, etc.

Returns
User: A user object representation of the user.

Example

// Normally not used directly
var oUser = User.GetUserByUserID(bp, "UID", User.eAuth.BuiltIn);

Developer's Reference Guide | 187



BP Logix Inc
Process Director Documentation

GetUserByIDOrUserID (Static Method)
This method will get a user object from the specified UID or UserID. This is an overloaded method with the
following possible declarations:
public static User GetUserByUserID(bp BP, string pUser)

public static User GetUserByUserID (bp BP, string pUser,
                                   Defines.eAuth AuthType)

Parameters
BP: The bp environment.

pUser: The UID or UserID of the user to retrieve.

AuthType: An optional Defines.eAuth object that defines the user's authorizations, i.e. User-
.eAuth.Windows, User.eAuth.BuiltIn, etc.

Returns
User: A user object representation of the user.

Example

// Normally not used directly
var oUser = User.GetUserByUserID(bp, "UID");

ImportUsersFromExcel
This method enables you to import a batch of users from an Excel spreadsheet.

Parameters
BP: The BP class.

DID: The Document ID of the Excel file in the Content List.

SheetName: The sheet name in the Excel file that contains the list of users.

Returns
String: The result of the import operation.

Example

// Import the users in the "Users.XLSX" file in the sheet named "Sheet1"
var DID = ContentObject.GetObjectByPathName(bp, "PartitionName",
    "/Users.XLSX");
var RES = BPLogix.WorkflowDirector.SDK.User.ImportUsersFromExcel(bp,

DID.ID, "Sheet1");

InGroup
This method checks if the user exists in the specified group.

Parameters
GID: The ID of the group in which to test the user.

Group: The actual group object in which to test the user.

188 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
Boolean: Whether or not the user exists in the specified group.

Example

var oUser = User.GetUserByUserID(bp, "UID");
var oGroup = Group.GetGroupByName(bp, "GroupName");
// The following two conditionals test the same thing (is "oUser"
// in "oGroup")
if(oUser.InGroup(oGroup))
{

// Do action
}
if(oUser.InGroup(oGroup.GID))
{

// Do action
}

LockUserAccount
This method locks the user account for a specified user.

Parameters
UID: The UID of the user account to lock.

Returns
Boolean: True if the operation succeeds.

Example

bool locked = LockUserAccount("UID");

NormalizeUserList (Static Method)
This method will take a UID or UserID list in string format or in a DataItem object and convert it to a nor-
malized List object. This is an overloaded method with the following possible declarations:
public static List<User> NormalizeUserList (bp BP, string pUserList)
public static List<User> NormalizeUserList (bp BP, string pUserList,
                                           bool ReturnNullOnInvalid)
public static List<User> NormalizeUserList (bp BP, ref DataItem pUsers)
public static List<User> NormalizeUserList (bp BP, ref DataItem pUsers,
                                           bool ReturnNullOnInvalid)

Parameters
BP: The bp environment.

pUserList: A string containing a comma-separated UID or UserID list of users.

pUsers: A DataItem object containing a list of UIDs or UserIDs.

ReturnNullOnInvalid: A boolean value the determine whether to return a null object if the list is invalid.
True will return the null on onvalid.

Returns
List: A List object containing the UIDs or UserIDs.

Developer's Reference Guide | 189



BP Logix Inc
Process Director Documentation

Example

// Normally not used directly
List oUsers = NormalizeUserList(bp, "UID1,UID2,UID3");

RemoveFromGroup
This method will remove the User the specified group.

Parameters
GID: The ID of the group from which to remove the user.

Group: The actual group object from which to remove the user.

Returns
None

Example

var oUser = User.GetUserByUserID(bp, "UID");
var oGroup = Group.GetGroupByName(bp, "GroupName");
oUser.RemoveFromGroup(oGroup);

RemoveSharedDelegate
This method will remove a User from a shared delegation.

Parameters
pRemoveUID: The UID of the user to remove from shared delegation.

Group: The actual group object from which to remove the user.

Returns
Boolean: True if the operation succeeds.

Example

// Remove a user from shared delegation
CurrentUser.RemoveSharedDelegate("UID");

ReplaceWithUser
This method will replace a Process Director user with a specified replacement user.

Parameters
ReplacementUID: The UID of the replacement user.

Returns
Boolean: True of the operation succeeds.

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.ReplaceWithUser("ReplacementUID");

190 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

SetCurrentUserContext
This method changes or sets the current user context.

Parameters
BP: The BP Logix environment.

UID: The string UID or UserID of the user.

Returns
Boolean: True if the operation succeeds.

Example

bool curr = SetCurrentUserContext("UID");

UnDelegateUser
This method enables a user to un-delegate all tasks.

Parameters
None.

Returns
Boolean: True if the operation succeeds.

Example

// Un-delegate current users tasks
CurrentUser.UnDelegateUser();

UnlockUserAccount
This method unlocks the user account for a specified user.

Parameters
UID: The UID of the user account to unlock.

Returns
Boolean: True if the operation succeeds.

Example

bool unlocked = UnlockUserAccount("UID");

UpdateLastActivityTime
This method will update the user object so set the current time as the last activity time for that user.

Parameters
None.

Returns
Boolean: True if the operation succeeds.

Developer's Reference Guide | 191



BP Logix Inc
Process Director Documentation

Example

// Update the last activity time for the user
CurrentUser.UpdateLastActivityTime();

UpdateUser
This method will update the user object in the database with any changes made to the object’s properties
(e.g. “UserID”, “UserName”, etc.)

Parameters
None.

Returns
Boolean: True if the operation succeeds.
Example

// Select a user
var oUser = User.GetUserByUserID(bp, "UID");

// Change the user's Company name
oUser.Company= "MyCompany";

// Update the user
oUser.UpdateUser();

UserExists
This method enables you to check to see if a user exists.

Parameters
BP: The BP Logix environment.

pUserID: A string UserID.

Optional Parameters
pAuthType: A User.AuthType object specifying the authorization type (Unknown, BuiltIn, Windows, etc.). If
this parameter is omitted, then Process Director will default this parameter to User.eAuth.BuiltIn.

Returns
Boolean: True if the user exists.

Example

bool exists = UserExists(bp, "UID", User.eAuth.BuiltIn);

Workflow Class

The Workflow object is the legacy process model used in early versions of Process Director.
BP Logix recommends the use of the Process Timeline object, and not the Workflow object. The
Workflow object remains in the product for backwards compatibility, but doesn't receive any new

192 | Developer's Reference Guide

Process Timelines.htm


BP Logix Inc
Process Director Documentation

functionality updates, other than required bug fixes. No new features have been added to this
object since Process Director v4.5. All new process-based functionality is solely added to the Pro-
cess Timeline.

This object represents a Workflow (definition and/or instance).

When developing Form scripts (in the various callback methods such as BP_Event) or Workflow scripts,
you are automatically given an instance of the “current” Workflow with the CurrentWorkflow variable.

This object is derived from the Process class, which is, in turn, derived from the ContentObject class. All
properties and methods from the ContentObject and Process classes are supported for this object, plus
the properties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

WFID String The ID of the Workflow definition

WFINSTID String The ID of the optional Workflow instance

Methods
AddToWorkflow
This API will add an item to a Workflow instance. This is an overloaded method with the following possible
declarations:
public bool AddToWorkflow(string ID, ObjectType Type)

public bool AddToWorkflow(string ID, ObjectType Type, string Group)

Parameters
ID: ID of the object to add to the Workflow.

Type: Type of the object to add to the Workflow.

Group: Optional Group of the object to add to the Workflow.

Returns
Boolean: True if the operation succeeds.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp, "WFINSTID");
oWorkflowInstance.AddToWorkflow("OBJID", ObjectType.Document);

Cancel
This API will cancel a running Workflow instance.

Parameters
none

Developer's Reference Guide | 193



BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp, "WFINSTID");
oWorkflowInstance.Cancel();

GetChildren
This API will get all children of the Workflow instance.

Parameters
ObjectType: Optional filter of object types to return.

MapType: Optional filter of map types to return.

GroupName: Optional filter of items in a Group to return.

Returns
List<ContentObject>: List of ContentObjects or null if the operation fails.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp, "WFINSTID");
// Gets all Workflow items in a named group
var MyChildren = oWorkflowInstance.GetChildren("GroupName");

GetWorkflowStepByName
This API will get the specified WorkflowStep. This is an overloaded method with the following possible
declarations:
public WorkflowStep GetWorkflowStepByName(string pStepName)

public static WorkflowStep GetWorkflowStepByName (bp BP, Workflow pWorkflow,
                                                 string pStepName)

Parameters
BP: The bp environment.

pStepName: The name of the Workflow Step to get.

pWorkFlow: The Workflow object containing the step.

Returns
WorkflowStep: The actual WorkflowStep or null if the operation fails.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp, "WFINSTID");
var ApproveStep = oWorkflowInstance.GetWorkflowStepByName("StepName");

GetWorkflowByWFID (Static Method)
This API will get a Workflow definition object from the specified ID.

194 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Parameters
BP: The bp environment.

WFID: The ID of the Workflow definition to retrieve.

Returns
Workflow: Will return null if Workflow isn't found.

Example

// Normally not used directly
var oWorkflowDef = Workflow.GetWorkflowByWFID(bp, "WFID");

GetWorkflowByWFINSTID (Static Method)
This API will get a Workflow instance object from the specified ID.

Parameters
BP: The bp environment.

WFINSTID: The ID of the Workflow instance to retrieve.

Returns
Workflow: Will return null if Workflow isn't found.

Example

// Normally not used directly
var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp, "WFINSTID");

JumpToStep
This API will jump to a specific Workflow Step.

Parameters
JumpFrom: Workflow Step name to jump from.

JumpTo: Workflow Step name to jump to.

Returns
Boolean: True if the operation succeeds.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp, "WFINSTID");
// Restarts the Workflow instance at a specific step
oWorkflowInst.JumpToStep("FromStepName","ToStepName");

JumpToStepID
This API will jump to a specific Workflow Step.

Parameters
FromSTID: Workflow Step ID to jump from.

Developer's Reference Guide | 195



BP Logix Inc
Process Director Documentation

ToSTID: Workflow Step ID to jump to.

Returns
Boolean: True if the operation succeeds.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp, "WFINSTID");
// Restarts the Workflow instance at a specific step
oWorkflowInst.JumpToStepID("FromSTEPID", "ToSTEPID");

PostEvent
This API will Post an event to a Workflow that is waiting on a wait step. This is an overloaded method with
the following possible declarations:
public bool PostEvent(string EventName)

public static bool PostEvent(bp BP, string WFINSTID, string EventName)

Parameters
BP: The bp environment.

WFINSTID: The ID of the Workflow instance to retrieve.

EventName: The name of the event to Post.

Returns
Boolean: True if the operation succeeds.

Example

// Wake up a Workflow
Workflow.PostEvent(bp, "WFID", "EventName");

ReStart
This API will start a Workflow Step that has previously completed.

Parameters
RestartStep: The WorkFlowStep object of the step to restart.

Returns
Boolean: True if the operation succeeds.

Example

// Restarts the Workflow Step
WorkflowStep myStep = GetWorkflowStepByName("StepName");
ReStart(myStep);

196 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

WorkflowStep Class

The Workflow object is the legacy process model used in early versions of Process Director.
BP Logix recommends the use of the Process Timeline object, and not the Workflow object. The
Workflow object remains in the product for backwards compatibility, but doesn't receive any new
functionality updates, other than required bug fixes. No new features have been added to this
object since Process Director v4.5. All new process-based functionality is solely added to the Pro-
cess Timeline.

This object represents a Workflow Step.

This object is derived from the ProcessTask class. All properties and methods from the ProcessTask are
supported for this object, plus the properties below.

When developing Form scripts (in the various callback methods such as BP_Event) or Workflow scripts,
you are automatically given an instance of the “current” Workflow with the CurrentWorkflowStep vari-
able.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

WFID String The ID of the Workflow definition

STID String The ID of the Workflow Step

StepName String The name of this step

WFINSTID String The ID of the Workflow instance

STINSTID String The ID of the Workflow Step instance

WfInst WorkflowInstance
Object

The Workflow instance object that contains
this step

Message String The optional message if this step is complete

Error Boolean Is the Workflow Step in an error state?

Methods
GetWorkflowStepByName (Static Method)
This API will get a Workflow Step object from the specified Name.

Parameters
BP: The bp environment.

Workflow: The Workflow object.

StepName: The name of the step to get.

Developer's Reference Guide | 197

Process Timelines.htm


BP Logix Inc
Process Director Documentation

Returns
WorkflowStep: Will return null if Workflow Step isn't found.

Example

var var oWorkflow = Workflow.GetWorkflowByWFID(bp, "WFID");
var oWorkflowStep = WorkflowStep.GetWorkflowStepByName(bp,

oMyWorkflow, "StepName");

GetWorkflowStepBySTID (Static Method)
This API will get a Workflow Step definition object from the specified ID.

Parameters
BP: The bp environment.

STID: The ID of the Workflow Step to retrieve.

Returns
WorkflowStep: Will return null if Workflow Step isn't found.

Example

// Normally not used directly
var oWorkflowStepDef = WorkflowStep.GetWorkflowStepBySTID(bp, "STID");

GetWorkflowStepBySTINSTID (Static Method)
This API will get a Workflow Step instance object from the specified ID.

Parameters
BP: The bp environment.

STINSTID: The ID of the Workflow Step instance to retrieve.

Returns
WorkflowStep: Will return null if Workflow Step isn't found.

Example

// Normally not used directly
var oWorkflowStepInst = WorkflowStep.GetWorkflowStepBySTINSTID(bp, "STINSTID");

JumpToStep
This API will set the Workflow’s running step from the current (this) step to a different step. This is an
overloaded method with the following possible declarations:
public bool JumpToStep(string pStepName)

public bool JumpToStep(string pStepName, string pAdminUID)

public bool JumpToStep(string pStepName, string pAdminUID, string pAdminComment)

Parameters
StepName: The name of the step to which to jump (the destination step).

198 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

AdminUID: Optional UID of the user which caused the step jump.

AdminComment: Optional remark on the reason for the jump.

Returns
Boolean: True if the operation succeeds.

Example

// Jump from the current step to the “Approve Request” step
CurrentWorkflowStep.JumpToStep("StepName");

JumpToStepID
This API will set the Workflow’s running step from the current (this) step to a different step. This is an
overloaded method with the following possible declarations:
public bool JumpToStepID(string pSTID)

public bool JumpToStepID(string pSTID, string pAdminUID)

public bool JumpToStepID(string pSTID, string pAdminUID, string pAdminComment)

Parameters
pSTID: The ID of the step to which to jump (the destination step)

pAdminUID: Optional UID of the user which caused the step jump

pAdminComment: Optional remark on the reason for the jump

Returns
Boolean: True if the operation succeeds.

Example

// Jump from the current step a named step
var wfStep = WorkflowStep.GetWorkflowStepByName(bp,
    CurrentWorkflow, "StepName");
CurrentWorkflowStep.JumpToStep(wfStep.STID);

WorkflowStepUser Class

The Workflow object is the legacy process model used in early versions of Process Director.
BP Logix recommends the use of the Process Timeline object, and not the Workflow object. The
Workflow object remains in the product for backwards compatibility, but doesn't receive any new
functionality updates, other than required bug fixes. No new features have been added to this
object since Process Director v4.5. All new process-based functionality is solely added to the Pro-
cess Timeline.

This object represents a user in a Workflow Step.

Developer's Reference Guide | 199

Process Timelines.htm


BP Logix Inc
Process Director Documentation

When developing Form scripts (in the various callback methods such as BP_Event) or Workflow scripts,
you are automatically given an instance of the “current” Workflow User with the Cur-
rentWorkflowStepUser variable.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

WFID String The ID of the Workflow definition

STID String The ID of the Workflow Step

SUID String The ID of the Workflow Step user

TLID String The optional task list ID

WFINSTID String The ID of the Workflow instance

STINSTID String The ID of the step instance

SUINSTID String The ID of the step user instance

User User Object The user object

Status Integer The status of this user in this Workflow Step.
Please see the table definition of tblPro-
jActivityUserInst for status codes.

Comment String If the user completed this task, the optional
comments

Start DateTime The time that the user started in this step

End DateTime The time that the user completed this step

TermReason Integer The termination reason for this user in this step.
Please see the Classes topic for a list of ter-
mination reasons and their associated integer
code.

BranchName String The branch the user selected to complete this
step

SubTaskName String The optional name of the sub task assigned to
this Task User

Methods
GetWorkflowStepUserBySUINSTID (Static Method)
This API will get a Workflow Step definition object from the specified ID.

Parameters
BP: The bp environment.

SUINSTID: The ID of the Workflow Step user to retrieve.

200 | Developer's Reference Guide

Table Definitions.htm


BP Logix Inc
Process Director Documentation

Returns
WorkflowStepUser: Will return null if Workflow Step isn't found.

Example

// Normally not used directly
var oWorkflowStepUser = WorkflowStepUser.GetWorkflowStepUserBySUINSTID(bp,
"SUINSTID");

Restart
This API will restart a Workflow Step for a specified user. There are two overloads for calling this function:
WorkflowStep.Restart(string UID)

WorkflowStep.Restart(string UID, string Comments)

Parameters
UID: The UID of the user to restart in the Workflow Step.

Comments: Optional parameter containing the Routing Slip comments to add to the Workflow Step.

Returns
None

Example

var oWorkflowStepInstance = WorkflowStep.GetWorkflowStepBySTINSTID
(bp, "STINSTID");
oWorkflowStepInstance.Restart();

Workspace Class
This object represents a Workspace object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

oPROFILEID String The ID of the Workspace

Name String The name of the Workspace

Description String The description of the Workspace.

Methods
GetWorkspaceByName
This API will return the Workspace object specified by the Name.

Parameters
bp: The Process Director environment.

pName: The string Name of the Workspace.

Developer's Reference Guide | 201



BP Logix Inc
Process Director Documentation

Returns
A Workspace object.

Example

var myWS = Workspace.GetWorkspaceByName(bp, "WorkspaceName");

GetWorkspaceByPROFILEID
This API will return the Workspace object specified by the Profile ID.

Parameters
bp: The Process Director environment.

pProfileID: The string Profile ID of the Workspace.

Returns
A Workspace object.

Example

var myWS = Workspace.GetWorkspaceByPROFILEID(bp, "PROFILEID");

JavaScript APIs
Process Director uses some JavaScript APIs to perform operations to manipulate Form data, or to Open
Forms in special circumstances as described below.

Form Data #
Process Director enables you to get or set Form Field values through JavaScript. Using the JavaScript API
enables you to use the appropriate JavaScript Input field attributes for the field type you wish to set. For
instance, the value of a text box can be set using the ".value" attribute, while the value of a checkbox can
be set using the "checked" attribute.

When using JavaScript, you can get or set the value of a field using the following syntax:
CurrentForm.FormControls["FieldName"].valueattribute

Examples

// Set the Value of a Text Box
CurrentForm.FormControls["Text1"].value = "MyValue";

//Get the value of a text box
var myValue = CurrentForm.FormControls["Text1"].value;

// Set the value of a checkbox
CurrentForm.FormControls["Checkbox1"].checked = true;

// Get the Value of a checkbox
var myValue = CurrentForm.FormControls["Checkbox1"].checked;

202 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

JavaScript can be used directly on the Form by inserting an HTML control on the Form and erasing the
Name property of the HTML control.

iPopupSimple Command #
When creating a Workspace for a new application, it's possible to display a Process Director form as the
primary portlet for the Workspace. You might wish to do this when you want the workspace to have a
highly customized display and layout, rather than displaying the standard Knowledge Views/Task List in
the standard workspace portlets. Using a Form in this manner enables you to design a workspace with cus-
tom colors, object locations, branding, etc.

There is one drawback to this method of UI design, in that Forms do not call other forms directly in Pro-
cess Director. In most cases, the purpose of a Form is to collect data about a specific process instance,
which can be submitted and used to view/update the data used in the process instance. This Form usage
assumes that the primary form will not call additional Forms and, if additional forms are needed, they can
be added to the Process Timeline via the Form Actions Timeline Activity. Indeed one can switch back and
forth between Forms using this Timeline Activity type.

Using a Form as the primary dashboard UI for a Workspace, therefore, represents a unique challenge, in
that you will probably want users to have the ability to open Forms, Knowledge Views, or other objects,
which is a capability that forms don't have. To enable this feature, a JavaScript command, iPopupSimple,
enables you to configure a Form button to open a new object instance in a popup window directly from
the Form. This JavaScript command takes a single parameter, which is the URL of the Process Director
object you wish to open, e.g.:
iPopupSimple('URLToOpen');

This command is conceptually very simple, but using it in an integration, especially when you'd like to use
different buttons to open different Process Director objects, adds a fair amount of complexity. Since that's
so, let's take a look at how to implement iPopupSimple using an implementation example.

First, the Workspace for our sample application is set to use a single portlet for the workspace that dis-
plays the Form we wish to use as the Workspace Dashboard.

In this example, the Submitter Dashboard is a Process Director Form that will display the application UI.
When displayed to the end user, it will look like this:

Developer's Reference Guide | 203



BP Logix Inc
Process Director Documentation

All of the objects the user sees are designed into the Form. There are several buttons on this form, so for
the purposes of this example, let's concentrate solely on the CreatePub button at the top of the Form,
which is labeled Create Publication. This button must, when clicked, open a new Form that the user can
fill out and submit. Let's take a close look at top portion of the Submitter Dashboard Form in the Online
Form Designer.

In addition to the CreatePub button, there's also a Content Picker control on the left side of the page,
named CreateForm. The CreateForm control enables us to specify the Form we want to open when the
CreatePub button is clicked. We do this by setting the Default Value property of the CreateForm control
to a Content Item, and choosing the Publication Project Form as the Content Item.

204 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

We'll use the value of the CreateForm control to help construct the URL we need to call with the
iPopupSimple command.

The CreatePub button is a simple Button control. In this case, since we'll be using it to call the
iPopupSimple JavaScript command, we'll use its OnClientClick property to call iPopupSimple by pla-
cing the command in that property box.

Developer's Reference Guide | 205



BP Logix Inc
Process Director Documentation

Normally, clicking a Button control prompts a reload of the Form to perform some sort of server-side
action. We don't want to do that in this case, so we're using the OnClientClick property to capture the but-
ton click event on the client side, which is to say, in the browser, rather than prompting a server-side
event.

The full syntax of the iPopupSimple command we're using is:
iPopupSimple('{Interface_URL}form.aspx?formid={:CreateForm,format=ID}');

To shorten the URL we need to provide, the JavaScript URL parameter we're passing uses two system vari-
ables. INTERFACE_URL provides the base URL of our Process Director Installation, ending in a forward
slash, e.g., HTTPS://publications.bplogix.com/. The Form System Variable for the CreateForm Con-
tent Picker is formatted to return the FormID of the Form we want to open as a new instance. At run-time,
this configuration ensures that, when the CreatePub button is clicked, the Publication Project Form is
opened in a new popup window, just as Forms normally open in Process Director.

Technically, we don't need to use either of these two system variables to construct the URL parameter
that we're passing to iPopupSimple. We could simply hard-code the Form URL into the command. But,
that would require typing a long, complex URL into the OnClientClick property box. Moreover, should we
need to change the Form we want to open with this button, such as after an update to the application,
we'd need to come back and re-type a different (long and complex) URL again. With this configuration, if
we need to change the Form we want to open, we just have to change the Default Value of the
CreateForm Content Picker to a different Form to update the URL parameter automatically.

206 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

In this example, we've only discussed opening a Form instance, but using the same process, we can also
open Knowledge Views, Charts, or other Content List objects as well. All we need to do is provide the
appropriate Content Picker and Button controls, and configure the onClientClick property for each of the
buttons we need.

Language/Culture Localization

Customizing the Process Director UI
The default language of Process Director is US English. All built-in system strings are stored in the \Pro-
gram Files\BP Logix\Process Director\website\App_GlobalResources\Resource.resx file (a standard .NET
resource file containing strings). To localize these to another language, create a separate file called
Resource.[Culture].resx in the same folder (where [Culture] is the language/culture type, as specified in
MSDN.). As an example, a file for German localization would be named "Resource.de.resx". This file will
contain the translated strings. You only need to include the strings that have been translated into this
file.

At runtime, the system will first try to find a string in the Resource.[Culture].resx file, and then it will try
the default Resource.resx file. Since the Resource.resx file is the final fallback file in this hierarchy, this
means that you can also create a customized US English resources file to change specific items of the Pro-
cess Director user interface text by creating a Resource.en-US.resx file. Process Director will check that
file first, and use any custom text from that file, before falling back to the main Resource.resx file for the
standard UI text items.

It is also possible to completely localize the entire Process Director UI by making a copy of the
Resource.resx your master translation file. This is, of course a very, very large file, and you'd need to also
add the custom strings you want to translate to each copy of this file.

Do not modify the Resource.resx file; it will be overwritten on any upgrade/patch.

Each user is able to set their own culture/language in their profile, and the system will use the appro-
priate resx file to display the customized interface for their selected culture.

Once you've edited the RESX files, you'll need to use the Locales custom variable to add the Cultures to
Process Director.

l Resource.en-US.resx for US English
l Resource.it.resx for Italian
l Resource.ja-JP.resx for Japanese
l etc.

See MSDN for the various "culture strings" (i.e. the portion of the file name between “Resource.” And
“.resx”).

Edit the strings in each new Resource.[culture_string].resx file for the specific language.

Copy all the translated RESX files into the \Program Files\BP Logix\Process Director\website\App_Glob-
alResources\ folder.

Developer's Reference Guide | 207

http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(VS.80).aspx
http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(VS.80).aspx


BP Logix Inc
Process Director Documentation

Ensure that the [Culture] portion of the file name for the RESX file matches the pValue parameter used in
the Locales custom variable.

Form Customization/Localization
In addition to the ability to localize Process Director's user interface, Forms can also be localized so that
the same Form can be used for users from different cultures. Localized Forms will automatically display
all of the Form field labels in the language appropriate to the user's culture.

Localizing Forms requires two steps:

1. Placing the translations for the Form field labels in the appropriate RESX file for each culture.
2. Using variables for Form labels instead of using fixed text (e.g., First Name, Last Name, etc.).

Let's look at each step separately, along with some best practices to implement when performing each
step.

Placing strings in the RESX file
Each time you add a field to a Form, you must create a new culture string for that field's label in the RESX
file for each culture. When you do so, it would be wise to create a naming convention for Form Field
strings. For example, for a common field, such a "First Name", you might create a resource string name
like "FirstName".

In the /website/App_GlobalResources folder of your Process Director installation, create a master string
file (a standard .NET RESX file) named "strings.resx" that contains all custom strings that you want to use.
This file uses the default language for Process Director, which is US English, so there's no need to spe-
cifically create a US English-version RESX file, though you'll need to create a language specific strings file
for other languages, e.g., strings.es.resx for Spanish.

Every RESX file must have a resource string entry for the field's label, with a different value in each file.
So, if you have a RESX file for US English, Spanish, and German the following entries would appear in each
RESX file for the FirstName string:

l strings.resx (US English): frmCommonFirstName "First Name"
l strings.es.resx (Spanish): frmCommonFirstName "Nombre de Pila"
l strings.de.resx (German): frmCommonFirstName "Vorname"

Using variables for Form field labels
You can access your own custom strings using a system variable such as {string:My_String} which will be
replaced at run time with the localized string. In the Form template, for each field label you'd like to cus-
tomize, use a System Variable or Label control, or just type the system variable in plain text.

208 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Additionally, you can use the comments portion of the RESX file to specifically identify which forms use
each string.

In the example above, the implementers can, in addition to the form field labels, also add common activ-
ity results, such as "Approve" by using System Variables such as {string:Approve} that will be replaced with
the localized version of the string "Approve" for the current user's culture. As you can see in this example,
Form fields have a comment that marks them as common Form fields, while "Approve" and "Reject" are lis-
ted as common results.

Now, we can see how the Form will display for each culture:

Developer's Reference Guide | 209



BP Logix Inc
Process Director Documentation

English

Spanish

210 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

German

Developer's Reference Guide | 211



BP Logix Inc
Process Director Documentation

Customization File

You can customize your Process Director installation by editing the customization file, vars.cs.aspx, that's
located in the \Program Files\BP Logix\Process Director\website\custom\ directory of your Pro-
cess Director installation. This directory is created during the initial installation of the product. The files in
this directory are not overwritten during subsequent installations, such as when you perform an upgrade
to a new version of Process Director.

The customization file is separated into several methods, each of which enables you to customize some
aspect of Process Director. Please expand the code example below to see an example of the cus-
tomization file and its organization.

Code Example
The following are called only for the vars files:

// Called BEFORE database initialized
public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
}

// Called AFTER database initialized
public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Before making SDK calls that access the database, ensure DB has
    // been opened by checking bp.DBOpenComplete
}

// Called on pages that are "in" a partition
public override void SetPartitionVars(BPLogix.WorkflowDirector.SDK.bp bp,
                                      BPLogix.WorkflowDirector.SDK.Partition Par-
tition)
{
}

/*
// This override allows you to return different values based on a token
// The default operator simply stores the values in a Dictionary
// Example: bp.Vars["GlobalVar1"] = "My Value";
public override string this[string pToken]
{
    get

{
        return "Token value: " + pToken;
    }
    set

{
    }
}
*/

// Called on every login for customizing the error checking of a user
public override bool CanLogin(BPLogix.WorkflowDirector.SDK.bp bp,
                              Login_Struct pLoginStruct,
                              out string pErrorString)
{
    pErrorString = null;

    /*
    if (pLoginStruct.UserID.ToUpper() == "BAD_USER")

212 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

{
        pErrorString = "That is a bad user";
        return false; // Prevent login
    }
    */
    return true; // Allow login
}

// Called to test if user can call specific web service
public override bool CanCallService(BPLogix.WorkflowDirector.SDK.bp bp,

User CurrentUser, string API)
{
    return true;
}

// Called to test if we can disable this user
public override bool CanDisableUser(BPLogix.WorkflowDirector.SDK.bp bp,
                                    string UID,
                                    out string Reason)
{
    Reason = null;
    return true;
}

// Called after every successful login
public override void LoginComplete(BPLogix.WorkflowDirector.SDK.bp bp,
                                   Login_Struct LoginStruct,
                                   User CurrentUser)
{
}

// Called after every logoff
public override void LogoffComplete(BPLogix.WorkflowDirector.SDK.bp bp,
                                    User LogoffUser)
{
}

// Called to return the optional page to navigate to after the login occurs
public override string GetFirstPage(BPLogix.WorkflowDirector.SDK.bp bp,
                                    string pFirstPage)
{
    return base.GetFirstPage(bp, pFirstPage);
}

// Called when a user clicks on "forgot password". In this callback, you can set
a
// new password for the user,
// and you can force the user to change their password after their first login.
// Return true to allow the password retrieval, or false to prevent the password
retrieval.
// Note that fAllowRetrievePassword must be set to true to allow any user to
// retrieve their password. Only built-in (vs Active Directory) users
// can retrieve their password.
public override bool ForgotPassword(BPLogix.WorkflowDirector.SDK.bp bp,
                                    string UserID,
                                    string OldPassword,
                                    out string NewPassword,
                                    out bool MustChangePassword)
{
    NewPassword = null; // Do not change old password
    MustChangePassword = false; // Do not force user to change password after
login
    return true;

Developer's Reference Guide | 213



BP Logix Inc
Process Director Documentation

}

// Called to validate a password change for a user
// Return true to allow the password change, or false to prevent
// the change. You can set the Reason parameter
// to a string representing the reason for the invalid password
// (e.g.,, password too short)
// NOTE: This is only enabled with the "Compliance Option"
public override bool ValidatePassword(BPLogix.WorkflowDirector.SDK.bp bp,
                                      string UserID,
                                      string OldPassword,
                                      string NewPassword,
                                      out string Reason)
{
    Reason = null;
    /*
    // Example to ensure all new passwords are at least 5 characters long
    if (NewPassword.Length < 5)

{
        Reason = "password too small";
        return false;
    }
    */
    return true;
}

// Called to customize the string that is displayed for each user.
// This will set the display string for the entire product.
// NOTE: You must set fAllowCustomUserString to true in order for this exit to be
called
public override void UserDisplayString(BPLogix.WorkflowDirector.SDK.bp bp,
                                       ref string UserString,
                                       User UserClass)
{
    /*
    // This will add the custom string to the end of the user display string
    if (!UserClass.CustomString.bpIsNullOrEmpty())

{
        UserString = UserString + " / " + UserClass.CustomString;
    }
    */
}

// Called to customize the string that is displayed for each user.
//This will set the display string only in the object that calls this function.
// NOTE: You must set fAllowCustomUserString to true in order for this exit to be
called
public override void UserDisplayString2(BPLogix.WorkflowDirector.SDK.bp bp,
                                       ref string UserString,
                                       User UserClass)
{
}

// This event is called prior to synchronizing a user from Active Directory
// using the AD Sync Profiles.
// Returning true allows the user to be sync'ed. Returning false will
// prevent the user from being sync'ed.
public override bool AD_Sync_User(BPLogix.WorkflowDirector.SDK.bp bp,
                        string ProfileName,
                        System.DirectoryServices.AccountManagement.UserPrincipal

214 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

User)
{
    /*
    // Do not sync the user if the email address is null
    if (string.IsNullOrEmpty(User.EmailAddress))
        return false;
    */
    return true;
}

// This event is called after synchronizing a user from Active Directory using
the AD Sync Profiles.
// This can be used, for example, to modify the user record after the sync.
public override void AD_Sync_User_Complete(BPLogix.WorkflowDirector.SDK.bp bp,
                           string ProfileName)
                           System.DirectoryServices.AccountManagement.UserPrincip-
al User,
                           string UID)
{
    /*
    var TempUser = BPLogix.WorkflowDirector.SDK.User.GetUserByID(bp, UID);
    if (TempUser != null)

{
        TempUser.CustomString = "Some custom value";
        TempUser.UpdateUser();
    }
    */
}

// This event is called prior to synchronizing a group from Active Directory
// using the AD Sync Profiles.
// Returning true allows the group to be sync'ed.
// Returning false will prevent the group from being sync'ed.
public override bool AD_Sync_Group(BPLogix.WorkflowDirector.SDK.bp bp,
                         string ProfileName,
                         System.DirectoryServices.AccountManagement.GroupPrincipa-
l Group)
{
    return true;
}

// This event is called after synchronizing a group from Active Directory using
the AD Sync Profiles.
public override void AD_Sync_Group_Complete(BPLogix.WorkflowDirector.SDK.bp bp,
                   string ProfileName,
                   System.DirectoryServices.AccountManagement.GroupPrincipal
Group,
                   string GID)
{
    /*
    var TempGroup = BPLogix.WorkflowDirector.SDK.Group.GetGroupByID(bp, GID);
    if (TempGroup != null)

{
    }
    */
}

// Called when a sync profile starts / end
public override void AD_Sync_Start(BPLogix.WorkflowDirector.SDK.bp bp,
                                   string ProfileName,
                                   string ProfileID,
                                   bool TestMode)
{

Developer's Reference Guide | 215



BP Logix Inc
Process Director Documentation

}

public override void AD_Sync_End(BPLogix.WorkflowDirector.SDK.bp bp,
                                 string ProfileName,
                                 string ProfileID,
                                 bool TestMode)
{
}

While many different aspects of your installation's operation can be altered via writing your own C# code
in the customization file, the primary customization method is to use one or more of the many Custom
Variables that are already built into the product, and which provide an easy means of changing the
default operation of the system. The built-in Custom Variables are organized into different categories in
this documentation, as outlined in the Custom Variables topic.

Access to the customization file is generally limited to On-Premise customers. Customers with
Cloud installations can only access their customization file directly via an additional license option
that enables them to access the /custom folder via an SFTP connection. Otherwise, Cloud cus-
tomers can submit a technical support ticket that describes the desired change, and BP Logix will
make it for them.

Form Control Styles
Forms have the ability to set the style for Enabled/Disabled form controls, Required form fields, and form
fields in an error state using the “Default Styles” section on the Form properties page. To modify the list
of default styles displayed in the dropdown, edit the vars.cs.aspx file.

Code Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Form style choices
    // If you comment out the first line, it will append new values to the
    // default list

bp.Vars.StyleOptions.Clear();
bp.Vars.StyleOptions.Add("border:3px solid #AD1A10;");
bp.Vars.StyleOptions.Add("border:3px solid red;");
bp.Vars.StyleOptions.Add("border:3px solid blue;");
bp.Vars.StyleOptions.Add("border:1px solid blue;");
bp.Vars.StyleOptions.Add("border:1px dashed blue;");
bp.Vars.StyleOptions.Add("border:1px dotted red;");

}

Creating Your Own Custom Variables
Process Director enables you to set your own system variables in the vars.cs.ascx file. All custom vars that
you create are formatted as strings, so you should use string syntax when setting the variable's value, i.e.,
use double quotes ("") around the value. Process Director will convert custom vars to numbers on the fly

216 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

if numeric comparisons or calculations are required. Custom vars that you create are stored in a custom
dictionary as key/value pairs.

There are two methods available in the custom vars file for creating custom vars: SetSystemVars and
PreSetSystemVars. The PreSetSystemVars method is called prior to initializing the Process Director
database, while the SetSystemVars method is called after database initialization.

In general, this means that the default method to use when creating custom vars is the PreSetSys-
temVars method; however, if you need to set the value of the var based on information stored in the Pro-
cess Director database, such as the identity of the user or the workspace in which the user is working, you
must use the SetSystemVars method.

Using the syntax {CustomVar:MY_VAR} elsewhere in Process Director will return the custom variable (in
this case, MY_VAR) value that was defined in the customization file.

Code Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This creates a new custom var that can be accessed from anywhere
    // within Process Director by using the syntax {CustomVar:MY_VAR}

bp.Vars["MY_VAR"] = "My string";
}

Session Variables
Process Director provides the ability to create session variables. These variables exist only for the length
of a single user session, and are discarded when the user's session ends, such as when the user logs out of
Process Director, or after the specified period of inactivity that is set in IIS. Session variables can be cre-
ated via custom scripting in a Form or process, or inside one of the sections of the customization file,
depending on when it's necessary to create the variable. For instance, if you want to set the session vari-
able any time a page loads in a partition, you could set the session variable in the SetPartitionVars
method of the customization file.

Code Example

public override void SetPartitionVars(BPLogix.WorkflowDirector.SDK.bp bp,
                         BPLogix.WorkflowDirector.SDK.Partition Partition)
{

// Default session var
    CurrentUser.SessionObjects["GROUP_ID"] = "";
    var mygroup = BPLogix.WorkflowDirector.SDK.Group.GetGroupByName(bp,
"MyGroup");

// Only want to set var for mygroup & valid user
    if (CurrentUser.InGroup(mygroup))

{
// Set the System Variable

        CurrentUser.SessionObjects["GROUP_ID"] =
bp.ConvertSysVarsInString("{BV:MyGroupData.GROUPID,

         $UserId="+CurrentUser.UID.ToString()+"}");
    }
}

Developer's Reference Guide | 217



BP Logix Inc
Process Director Documentation

Once the session variable has been set, the variable is addressable through code, or in any Process Dir-
ector Object using the Session System Variable .

Shared Delegation
Shared Delegation can be universally disabled in the Custom Vars file via the SharedDelegationAllowed
method.

Code Example

// We want to disable the shared delegation for the system
public override bool SharedDelegationAllowed(BPLogix.WorkflowDirector.SDK.bp bp,
                                             Task TaskList,
                                             User CurrentUser,
                                             User TaskListUser,
                                             out string ReasonString)
{

ReasonString = "Reason for disabling";
// Disable Shared Delegation

    return false;
}

Custom Variables
Process Director provides many built-in Custom Variables that control or customize various functions on
the system. Most Custom Variables should be set in the PreSetSystemVars method of the cus-
tomization file, but this isn't universally true. The PreSetSystemVars method is called prior to the sys-
tem accessing the Process Director database, while SetSystemVars is called after the database has been
initialized. Any custom setting that relies on information contained in the Process Director database, such
as the ID of a user or Process Director object, will only work properly when called from the SetSys-
temVars method. Please refer to the documentation's code samples for the system variables you're set-
ting, to ensure you place each Custom Variable in the appropriate method in the customization file.

The built-in Custom Variables are arranged into general subject sections to help make them easier to find
in the documentation. To see the Custom Variables for each subject, you can use the Table of Contents
displayed on the upper right corner of the page, or click on one of the links below.

Active Directory: Active Directory synchronization variables.

Administration: Sets administrative options for the system.

Auditing: Controls the operation of the audit logs.

Collaborative Features: Controls the operation of the CDM/CDA features (for appropriately licensed
installations).

Default Settings: Enable changing the default options for your Process Director Installation.

LDAP: Controls the operation of LDAP synchronizations.

List Maximums: Controls the maximum number of items returned by various system list objects, such as
Knowledge Views.

Logs: Controls the operation of the system logging functions.

Miscellaneous: General variables that control various Process Director options/operations.

218 | Developer's Reference Guide

Miscellaneous System Variables.htm#SessionVariable
User Delegation.htm#SharedDelegation
Customization File Collaboration.htm


BP Logix Inc
Process Director Documentation

ML/AI: Controls the operation of Machine Learning/Artifical Intelligence features.

Mobile Application: Controls the operation of the BP Logix Mobile App (for appropriately licensed install-
ations).

Password Enforcement: Controls the complexity and security of user passwords.

Process Administration: Enables altering the default settings for who can access process administration
features.

Reporting Tool: Enables altering the default settings of the Advanced Reporting Component.

REST: Customizes the settings associated with REST data usage.

SAML: Configures the connection to a SAML IdP for external authentication (Federated Identity).

Social Media: Sets options for accessing data from Social Media applications.

System: Enables altering the general system properties.

Tasks: Enables customizing the default settings related to user tasks.

User Interface: Controls the appearance of the Process Director User Interface.

User Info SlideOut: Enables altering the operation of the User Info SlideOut that displays their profile to
end users.

Users: Controls the operations of various system features relating to users and user accounts.

Active Directory Custom Variables
You can customize some of the ways in which Process Director interacts with Active Directory by editing
the custom variables in this section of the documentation.

ADAuthNoDomain
Certain Active Directory installations can't accept a domain as part of the credential validation. This flag
can be set to ensure the domain isn't passed to the Active Directory validation.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Do not use the domain on the credential validation
    bp.Vars.ADAuthNoDomain = true;
}

ADAuthSettings
This variable enables you to configure specific authentication settings for each domain for validating
users at login. The account used for each domain must have permission to open the Active Directory and
validate credentials.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Configure specific administrator accounts to use to validate
    //logins for 2 domains.

bp.Vars.ADAuthSettings.Add(new ADAuthSetting("MY_DOMAIN_1", "AD_Admin",

Developer's Reference Guide | 219



BP Logix Inc
Process Director Documentation

"pwd1"));
bp.Vars.ADAuthSettings.Add(new ADAuthSetting("MY_DOMAIN_2", "AD_Admin",

"pwd2"));
}

ADGrouphierarchy
This variable enables you to configure the type(s) of groups that the user is a member of when using the
Active Directory Synch.
Values

VALUE NAME DESCRIPTION DEFAULT

ADGroupHierarchyOptions.AllAuthGroups This will enable adding the user to every
security group (even hierarchical) they are
a member of.

ADGroupHierarchyOptions.AllGroups This will enable adding the user to every
group (security AND distribution) (even hier-
archical) they are a member of.

ADGroupHierarchyOptions.None setting will only add the users to the
groups they are directly a member of.

Default

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// The default
    // This will enable adding the user to every security group
    // (even hierarchical) of which they are a member.
    bp.Vars.ADGrouphierarchy = ADGroupHierarchyOptions.AllAuthGroups;

    // This will enable adding the user to every group (security AND
    // distribution, even hierarchical) of which they are a member.
    bp.Vars.ADGrouphierarchy = ADGroupHierarchyOptions.AllGroups;

// This setting will only add the users to the groups of which they are
    // directly a member
    bp.Vars.ADGrouphierarchy = ADGroupHierarchyOptions.None;
}

AD_NormalOptions
Can be used to configure options used in the PrincipalContext to connect to the Active Directory server.
See the Microsoft documentation for ContextOption Enumeration for a description of the options.

The available options are:

l System.DirectoryServices.AccountManagement.ContextOptions.Negotiate
l System.DirectoryServices.AccountManagement.ContextOptions.Signing
l System.DirectoryServices.AccountManagement.ContextOptions.Sealing

220 | Developer's Reference Guide

http://msdn.microsoft.com/en-us/library/system.directoryservices.accountmanagement.contextoptions(v=VS.90).aspx


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set the flags for options for Active Directory
    bp.Vars.AD_NormalOptions =

System.DirectoryServices.AccountManagement.ContextOptions.Negotiate;
}

ADSSLOptions
Can be used to configure options used in the PrincipalContext to connect to the Active Directory server
for SSL encrypted sessions. See the Microsoft documentation for ContextOption Enumeration for a
description of the options.

The available options are:

l System.DirectoryServices.AccountManagement.ContextOptions.Negotiate
l System.DirectoryServices.AccountManagement.ContextOptions.SecureSocketLayer

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set the flags for SSL options for Active Directory
    bp.Vars.AD_SSLOptions =

System.DirectoryServices.AccountManagement.ContextOptions.SecureSocketLayer;
}

AD_SyncUsersByGroupRecurse
Can be used to disable group recursion for Active Directory synchronization, if needed. The default value
for this variable is "true", and should usually remain so. An issue with Microsoft Windows 2016, however,
may cause synchronization to fail when limiting synchronization to a specific user or group. Setting this
value to "false" can serve as a workaround for this issue.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disable group recursion for Active Directory synchronization
    bp.Vars.AD_SyncUsersByGroupRecurse = false;
}

fADSyncAllowManagerOtherOU
This boolean variable, when set to "true" enables you to sync a manager with a user if the manager is
synced from a different OU (AD Root Path) than the user. The default value of this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//Sync managers from a different OU than the users they manage
bp.Vars.fADSyncAllowManagerOtherOU = true;

}

Developer's Reference Guide | 221

http://msdn.microsoft.com/en-us/library/system.directoryservices.accountmanagement.contextoptions(v=VS.90).aspx


BP Logix Inc
Process Director Documentation

fReenableUsersOnSync
This integer variable determines what happens to pre-existing disabled users on an AD Sync.  If set, the
sync will re-enable these users, but won't if the flag isn't set.  The default value of this flag is ‘true’.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fReenableUsersOnSync = false;
}

fSyncExtraLog
This Boolean variable sets whether to turn on extra, Level 0 logging when a sync is performed. The
default value of this variable is False.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fSyncExtraLog = false;
}

nMaxUsersToDisableOnSync
This integer variable sets the maximum number of users to disable on an Active Directory Syn-
chronization. The default value of this setting is 30.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMaxUsersToDisableOnSync = 30;
}

nMaxPercentUsersToDisableOnSync
This double variable sets the maximum percentage of users to disable on an Active Directory Syn-
chronization. The default value of this setting is .10, which is 10%.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMaxPercentUsersToDisableOnSync = .10;
}

nMinLDAPUsersWithGroupsBeforeDisable
This integer variable sets the minimum number of users that need to have groups before Process Director
removes any group memberships during an Active Directory synchronization. The default value of this vari-
able is 10.

222 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMinLDAPUsersWithGroupsBeforeDisable = 10;
}

Administration Custom Variables
Process Director 's Administrative settings can be customized by editing the custom variables in this sec-
tion.

Activity Checking Custom Variables
Process Director advances processes and send reminders based on recurring activity checks that occur on
the system. These activity checks occur when certain process events are initiated, when the Activity Check
page is run, or at minimum intervals specified by default Custom Variable settings.

When the activity check page runs, Process Director will determine which timer processing functions need
to occur. (There are a few things like GOALS that will be evaluated EVERY time the activity check runs
because they are low-impact.) You can control the timer functions by setting custom variables in the
vars.cs customization file. These timer functions are NOT controlled by the frequency that the activity_
check.aspx page is scheduled. The following configuration variables control the amount of time to wait
between different types of timer processing. The following Custom Variables control the timing of advan-
cing process steps and reminders that are time based:

l TimerSecondsCheckWfAdvance: Checks Workflows to advance time-based steps. The default timing is
6 hours.

l TimerSecondsCheckWfReminders: Checks Workflows to send time-based reminders. The default tim-
ing is 1 hour.

l TimerSecondsCheckProjAdvance: Checks Process Timelines to advance time-based Activities. The
default timing is 6 hours.

l TimerSecondsCheckProjReminders: Checks Process Timelines to send time-based reminders. The
default timing is 1 hour.

For Process Director v5.39 and below, the default timings for TimerSecondsCheckWfAdvance and Timer-
SecondsCheckProjAdvance are set to 2 hours. This was changed in newer versions as the shorter time lim-
its could use excessive system resources on very active systems.

Additionally, the fDisableUserPrediction Custom Variable will, when set to "false", enable more accurate
prediction of activity times based on each specific user that has been assigned to an activity. This setting
will consume more system resources when being used, so the default value for this variable is "true".
When set to "true", prediction will still occur, but with less predictive accuracy.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Default to 6 hours between checking projects for advance
    // AND prediction calculations (e.g. completed/start when
    // conditions, due dates, etc.)

Developer's Reference Guide | 223

Activity Check.htm


BP Logix Inc
Process Director Documentation

bp.Vars.TimerSecondsCheckProjAdvance = 60 * 60 * 6;

// default to 1 hour between checking projects for email reminders
bp.Vars.TimerSecondsCheckProjReminders = 60 * 60 * 1;

// Less accurate user predictions for task completion,
    // but fewer system resources used

bp.Vars.fDisableUserPrediction = true;
}

AllowedExportLocations
The AllowedExportLocations variable is a list of strings that contains all of the folder locations to where a
file export via Knowledge View, Custom Task or other file location export is allowed.

For instance, this variable enables you to control the locations to which a KView can export documents
when called via a URL. Calling a Knowledge View via URL will accept a URL Parameter named export-
name that enables the Knowledge View to export a file to a specified file path/file name. Similarly, a file
export from a Custom Task will usually provide a file path property to specify an export location for an
exported document attachment.

To prevent users from exporting files to unwanted locations, or overwriting existing files, this variable
MUST be set. Any attempt to export a file to any folder not listed in this variable will fail. The locations lis-
ted in this system variable will be treated as parent-level folders, which means that you can write doc-
uments to any location or subfolder below the specified folder location.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Create List values
    List<string> MyExportLocations = new List<string>();

MyExportLocations.Add(@"C:\Documents");
MyExportLocations.Add(@"C:\Files\Images");

// Apply List values to the Custom Variable
bp.Vars.AllowedExportLocations = MyExportLocations;

}

fEnableEncryptionMigration
This variable, when set to "false", will disable the migration to AES encryption when upgrading to Process
Director v5.44.700 or higher from v5.44.600 or lower. The default value for this variable is "true".

The encryption system used by Process Director prior to v.5.44.600 has been deprecated. Set-
ting this value to "false" will prevent encrypted fields from being upgraded to full AES encryption,
and existing encrypted fields will use the deprecated encryption system, which is being replaced by
AES.

224 | Developer's Reference Guide

Knowledge View Operations.htm#URL


BP Logix Inc
Process Director Documentation

When this value is set to "false", though migration of existing encrypted values won't occur on upgrade,
new encrypted values will still be created using AES, e.g., submitting a new form instance with encrypted
form controls.

Any time data that uses the deprecated encryption is accessed, an ERROR log message will be generated
as a reminder that migration hasn't yet been performed (I.e., "ERROR: Deprecated encrypted value detec-
ted, please upgrade using Administration pages."). There won't be any data-loss or corruption, as the sys-
tem will recognize both AES and deprecated encryption.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Turn off AES Encryption Migration
bp.Vars.fEnableEncryptionMigration= false;

}

fAllowCustomUserString
This Custom Variable, when set to "true", enables you to call the custom functions called User-
DisplayString() and UserDisplayString2() in the vars.cs.ascx Customization File. These functions
enable you to control what the display string looks like for a user in the product.

The UserDisplayString() function sets the display string universally in the product.

The UserDisplayString2() function returns the Display string to the location/object from which it is
being called, to give you the flexibility to only change the display string for the user in a specific place
instead of in the whole product.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enables you to call the UserDisplayString and UserDisplayString2 func-
tions.

bp.Vars.fAllowCustomUserString = true;
}

fAuthWindows
This variable, when set to true, enables the use of Windows login security. The default value for this vari-
able is "false", and is set in the XSD file.

You usually don't turn on this feature on by changing the value of this System Variable. Instead, this fea-
ture is enabled in the product in the User Authentication settings by setting the Enable Windows
Authentication dropdown to "True" .Windows login security can't be implemented until the Enable Win-
dows Authentication setting is set to "True".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Windows authentication is disabled

bp.Vars.fAuthWindows = false;
}

Developer's Reference Guide | 225

User Authentication Settings.htm


BP Logix Inc
Process Director Documentation

fAuthWindowsIntegrated
This variable, when set to true, enables the use of NTLM integration. The default value for this variable is
"true", and is set in the XSD file.

While this variable is set to "true" by default, Windows Integrated Security is set to "false' by default. You
usually turn on this feature in the product in the User Authentication settings by setting the Enable Win-
dows Authentication dropdown to "True". Even though the fAuthWindowsIntegrated variable is set to true
by default, windows login security can't be implemented until the Enable Windows Authentication setting
is set to "true".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // NTLM Integration is disabled.

bp.Vars.fAuthWindowsIntegrated = false;
}

fAutoDST
This variable enables you to override whether daylight savings is used in the time zone.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Use CST for everyone

bp.Vars.sTimeZoneID = "Pacific Standard Time";

    // Do not use daylight savings time adjustments
bp.Vars.fAutoDST = false;

}

fDisableExcelImport
This variable enables you to control whether the Excel files can be used to automatically populate SQL
databases.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Disable the auto-excel import feature

bp.Vars.fDisableExcelImport = false;
}

fDisableKViewAppCaches
This variable, when set to "true", will disable application level caching in the Knowledge Views when using
a Load Balanced system. The default value for this variable is "false".

226 | Developer's Reference Guide

User Authentication Settings.htm


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disable application-level caching for load balancing
bp.Vars.fDisableKViewAppCaches = true;

}

fDisable_sValueSearch
This variable, when set to "true", will disable the time-consuming update of the sValueSearch field that
takes place during some upgrades. This option enables the system to be updated and work without using
the sValueSearch field. Upgrades that require this field update can take up to 24 hours. The sValueSearch
field was added to the database to significantly improve search performance. It must be populated, how-
ever, which can be a very time-consuming process. This population, by default, happens during the
upgrade cycle, which can cause the upgrade to take a very long time.

You can, when this value is set to "true", skip the field update during the upgrade, and populate it later
using the Troubleshooting section in the IT Admin area in DEBUG mode. There is a link to update the
search value column in tblFormData. This command could take 24 hours to run, depending on the speed
of your database. It can be run and re-run and, each time, will pickup where it left off, until the entire
update is complete. This feature enables you to perform the update during non-work hours. Once the
update has no more records to process you can remove this variable setting from the vars file to have the
searches start using the new sValueSearch column.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disable the update to the sValueSearch field
bp.Vars.fDisable_sValueSearch = true;

}

fEnableDenyPermissions
This variable enables Process Director to implement a "Deny" permissions model, so that users can be spe-
cifically denied access to objects. In most cases, the default Process Director permissions model is
adequately hardened, so this variable is set to "false" by default. There are, however, some use cases for
adding specific denial records. Setting this variable to "true" will turn on the denial permissions model,
but the extra permissions checking that the denial model requires may have some impact on system per-
formance.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will enable denial permissions.
bp.Vars.fEnableDenyPermissions = true;

}

fEnableFormFieldDownload

Developer's Reference Guide | 227



BP Logix Inc
Process Director Documentation

This variable, when set to "true" enables users to download the form fields in an excel file, from a link on
the Properties tab of the Form Definition. The default value is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Allow form field downloads in Excel.
bp.Vars.fEnableFormFieldDownload = true;

}

fEnableJSURL
This variable, when set to "true", enables custom forms to pass JavaScript to be executed after a form
completes. The default value for this variable is "false". For users of Process Director v4.54 and below, this
variable must be set to "true" to enable the Copy Form Data Custom Task to close one form and open
another, when configured to do so.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will enable custom forms to pass JavaScript to be executed
    // after the form completes.
    Vars.fEnableJSURL = true;
}

fEnableOldShowAttach
This variable, when set to "true", disables the Group Name wildcard functionality for ShowAttach controls.
The default value for this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disable wildcards for ShowAttach control Group Names
bp.Vars.fEnableOldShowAttach = true;

}

fEnableReferrerProtection
This Boolean variable, when set to "true," enables Process Director to screen for Cross-Site Request For-
gery (CSRF) by ensuring that the HTTP Referrer header is valid. CSRF is a type of malicious exploit of a
website where unauthorized commands are transmitted from a user that the website trusts. The default
value for this variable is "false".

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// HTML header validation to protect against CSRF
    Vars.fEnableReferrerProtection = true;
}

fRemoveSavedInstForOldUsers

228 | Developer's Reference Guide

Form Data Mapping Custom Tasks.htm#CopyFormData


BP Logix Inc
Process Director Documentation

This variable, when set to "true", will remove all saved form instances for a user that is deleted or dis-
abled. The default value for this variable is "false".

Caution should be used when implementing this feature, as removing or disabling a user will
delete all historical form data for the user.

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Remove form instances for deleted/disabled users
bp.Vars.fRemoveSavedInstForOldUsers = true;

}

fSharedDelegationAllProcesses
This variable , when set to "true" will implement Shared Delegation for all processes. The default value for
this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will enable shared delegation for all processes.
bp.Vars.fSharedDelegationAllProcesses = true;

}

ForceSecureCookies
This string variable enables you to set cookies to transmit using only the Secure Sockets Layer (SSL).
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Force cookies to transmit only via SSL.
bp.Vars.ForceSecureCookies = true;

}

sMobileWebServerURL
This string variable enables customers who have licensed the offline Appenate server to configure the cus-
tom URL of their mobile server for use by Custom Tasks and other features. This feature is unavailable for
versions prior to Process Director v5.45, and who have not also licensed the offline mobile feature.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Mobile App server URL
bp.Vars.sMobileWebServerURL = "http://mobile.bplogix.com";

}

fTestMode

Developer's Reference Guide | 229

User Delegation.htm#SharedDelegation


BP Logix Inc
Process Director Documentation

These variables allow you to set the system into a test mode. In this mode, Windows Integrated authen-
tication is disabled. This mode enables anyone to log into the server without a password. Use this setting
with caution. It should only be used on non-production systems to test processes and Forms.

For more information, see the Test Server Methodology topic in the System Administrator's Guide.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// ****************************************
    // SET THE TEST USER FOR TEST MODE
    // Turn test mode on

bp.Vars.fTestMode = true;

// Set the test email user
bp.Vars.TestUserEmails = User.GetUserByUserID(bp, "my_test_id");

// ===OR===

    // ****************************************
    // SET THE TEST USER EMAIL ADDRESS FOR TEST MODE
    // Turn test mode on

bp.Vars.fTestMode = true;

// Set the test email user
bp.Vars.TestUserEmailAddress = "username@domain.com";

}

fUseNewLoginSessionGUID
This variable, when set to "true", will cause the users session GUID to be cleared any time a new login
occurs. This setting will automatically relog a user who signs in using same user ID, even if that login is
still active on the same computer in a different browser window. Relogging the user will clear all existing
session data, including session variables, and will initiate a new session for the user.

This variable is configured in the PreSetSystemVars() function.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will clear an existing users active session if the user logs in again
bp.Vars.fUseNewLoginSessionGUID = true;

}

fWebServiceAuth
This boolean determines whether authorization is required for Web Service users. The default value is
true.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Do not require web service authorization
bp.Vars.fWebServiceAuth = false;

}

230 | Developer's Reference Guide

Test Server Methodology.htm


BP Logix Inc
Process Director Documentation

Locales
This string variable enables you to add additional cultures to process director. In most cases, each addi-
tional culture will have a resource file for localizing strings for different cultures, as described in the Local-
ization topic of the Developer's Guide. Once the cultures have been added, they'll appear in the Culture
property dropdown controls that appear in each user's profile, and in other places.
Parameters
l pName: The string name of the culture, e.g. "Spanish"
l pValue: The string value used to identify the culture, in one of the standard culture formats, e.g. "es".
Process Director will use this value to identify the Culture name used on the name of the RESX file,
e.g., "strings.es.resx".

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Add Cultures to process Director
bp.Vars.Locales.Add(new NameValue("Spanish", "es"));
bp.Vars.Locales.Add(new NameValue("German", "de"));

}

nMaxActivityStarts
If a Process Timeline instance is determined to be in an endless loop condition, the problem activity will
be placed into an error state. This detection logic to define an endless loop is controlled through the
nMaxActivityStarts, nMaxActivityStartsInLastSecs, and nTimelineLoopCountStarts variables.

This variable sets how many times a step restarts in the number of seconds set in the nMaxActiv-
ityStartsInLastSecs variable before considering it in a loop. The default value is 100.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMaxActivityStarts = 100;
}

nMaxActivityStartsInLastSecs
If a Process Timeline instance is determined to be in an endless loop condition, the problem activity will
be placed into an error state. This detection logic to define an endless loop is controlled through the
nMaxActivityStarts, nMaxActivityStartsInLastSecs, and nTimelineLoopCountStarts variables.

This variable sets how many seconds to use in loop calculations performed by the nMaxActivityStarts vari-
able. The default is 60.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMaxActivityStartsInLastSecs = 60;
}

Developer's Reference Guide | 231



BP Logix Inc
Process Director Documentation

nTimelineLoopCountStarts
If a Process Timeline instance is determined to be in an endless loop condition, the problem activity will
be placed into an error state. This detection logic to define an endless loop is controlled through the
nMaxActivityStarts, nMaxActivityStartsInLastSecs, and nTimelineLoopCountStarts variables.

This variable sets the number of activities that may be started in one pass of a process. The default is 100.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Set max number of allowable loops to 50

bp.Vars.nTimelineLoopCountStarts = 50;
}

sPDFInterfaceURL
This variable is used to set the optional interface URL to use for converting PDF files.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the interface URL to use for converting files to PDF.

bp.Vars.sPDFInterfaceURL = "http://localhost/";
}

sPickupDirectoryLocation
IIS in Windows 2008 R2 and higher requires a path to be configured to the mail pickup directory when
using the local SMTP server to send email. This is set using the sPickupDirectoryLocation custom variable.
For Process Director v5.31 and higher, Process Director defaults this pickup directory to the Windows
default of C:\Inetpub\mailroot\Pickup\ so it only needs to be set when it is in a different location. Addi-
tionally, the setting of this variable won't force emails to use the local SMTP server when an SMTP Host is
specified in the installation settings.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Change the mail pickup directory to a non-default location.

bp.Vars.sPickupDirectoryLocation = "C:\nonDefault\directory";
}

sTimeZoneID
This variable enables you to set the default time zone for the server and for all users. A time zone con-
figured in a user profile will override this variable for that user. This string should be set to the Time Zone
ID specified by the .NET environment. Leave this variable null to use the system time zone.

232 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Use CST for everyone

bp.Vars.sTimeZoneID = "Central Standard Time";

    // Automatically adjust for daylight savings
bp.Vars.fAutoDST = true;

}

The list below shows the possible time zone values as defined by .NET:

Morocco Standard Time GMT Standard Time Romance Standard Time

W. Europe Standard Time Central Europe Standard Time Namibia Standard Time

Central European Standard Time W. Central Africa Standard Time Middle East Standard Time

Jordan Standard Time GTB Standard Time South Africa Standard Time

Egypt Standard Time Syria Standard Time E. Europe Standard Time

FLE Standard Time Israel Standard Time Russian Standard Time

Arabic Standard Time Arab Standard Time Arabian Standard Time

E. Africa Standard Time Iran Standard Time Georgian Standard Time

Azerbaijan Standard Time Mauritius Standard Time Ekaterinburg Standard Time

Caucasus Standard Time Afghanistan Standard Time India Standard Time

Pakistan Standard Time West Asia Standard Time Central Asia Standard Time

Sri Lanka Standard Time Nepal Standard Time Myanmar Standard Time

Bangladesh Standard Time N. Central Asia Standard Time China Standard Time

SE Asia Standard Time North Asia Standard Time W. Australia Standard Time

North Asia East Standard Time Singapore Standard Time Tokyo Standard Time

Taipei Standard Time Ulaanbaatar Standard Time Cen. Australia Standard Time

Korea Standard Time Yakutsk Standard Time AUS Eastern Standard Time

AUS Central Standard Time E. Australia Standard Time Vladivostok Standard Time

West Pacific Standard Time Tasmania Standard Time New Zealand Standard Time

Magadan Standard Time Central Pacific Standard Time Tonga Standard Time

Fiji Standard Time Kamchatka Standard Time Mid-Atlantic Standard Time

Azores Standard Time Cape Verde Standard Time SA Eastern Standard Time

E. South America Standard Time Argentina Standard Time Newfoundland Standard Time

Greenland Standard Time Montevideo Standard Time Central Brazilian Standard Time

Paraguay Standard Time Atlantic Standard Time Venezuela Standard Time

Developer's Reference Guide | 233



BP Logix Inc
Process Director Documentation

SA Western Standard Time Pacific SA Standard Time US Eastern Standard Time

SA Pacific Standard Time Eastern Standard Time Central Standard Time (Mexico)

Central America Standard Time Central Standard Time Mountain Standard Time (Mexico)

Canada Central Standard Time US Mountain Standard Time Pacific Standard Time

Mountain Standard Time Pacific Standard Time (Mexico) Samoa Standard Time

Alaskan Standard Time Hawaiian Standard Time

Dateline Standard Time Greenwich Standard Time

sLocalIPs
This variable is used to set the optional list of local IP addresses on the server. This is used so that any
browser request from one of the local IP addresses will be able to access all administration functions.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the following IP addresses as "local" IP
    // addresses for this multi-NIC server

bp.Vars.sLocalIPs = "10.1.5.14,10.1.5.32";
}

TestModeIPs
This variable enables you specify the IP addresses that are allowed to connect to a Process Director Server
that has been placed in Test mode, via the fTestMode custom variable. This is required to allow access to
a server that is in test mode. If accessing the server locally, the IP address doesn't need to be listed.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// ****************************************
    // SET THE TEST USER FOR TEST MODE
    // Turn test mode on

bp.Vars.fTestMode = true;

// Set the IP Addresses allowed to access the server
bp.Vars.TestModeIPs.Add("10.1.1.1");

}

TestUserEmailAddress
This variable enables you to route all process emails (task list emails, notifications, etc.) to a single email
address. This system variable doesn't require a database connection.  Use this setting with caution. It
should only be used on non-production systems to test process and Forms. If your installation is con-
figured to enable users to retrieve forgotten passwords, via the fAllowRetrievePassword custom variable,
the TestUserEmailAddress won't receive password reset request emails.

234 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// ****************************************
    // SET THE TEST USER FOR TEST MODE
    // Turn test mode on

bp.Vars.fTestMode = true;

    // Set test email
bp.Vars.TestUserEmailAddress = "demo@bplogix.com";

}

TestUserEmails
This variable enables you to route all process emails (task list emails, notifications, etc) to a single user.
Use this setting with caution. It should only be used on non-production systems to test processes and
Forms.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// ****************************************
    // SET THE TEST USER FOR TEST MODE
    // Turn test mode on

bp.Vars.fTestMode = true;

// Specify user to use for test emails
bp.Vars.TestUserEmails = User.GetUserByUserID(bp, "my_test_id");

}

Auditing Custom Variables
You can alter some of the auditing functions of Process Director by editing the custom variables listed in
this section.

fAuditAnonAccesses
This variable enables Process Director to log various events in the audit logs that are specific to anonym-
ous access to Process Director. In most cases, the Process Director installation won't be accessed by out-
side users with anonymous access, so this variable is set to "false" by default. Setting this variable to
"true" will turn on the audit logging for these events.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will turn on audit logging for anonymous access.
bp.Vars.fAuditAnonAccesses = true;

}

fAuditFormAPICalls
This variable, when set to false, prevents Process Director from auditing form field changes made by API
calls.

Developer's Reference Guide | 235



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Do not audit form field changes made by API calls
bp.Vars.fAuditFormAPICalls = true;

}

fAuditFormViews
This variable determines whether Process Director will write an audit log for all form views. This can result
in a tremendous amount of audit logging when the value is set to "True". The default for this variable is
"False".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Do not store audit logs when a user views
    // a Process Director Page. Setting this value to true may cause
    // excessive logging and impact system performance.

bp.Vars.fAuditFormViews = true;
}

fAuditLogFileOnly
This variable, when set to the default value of "true", stores the Audit log file in the file system only, in
the /App_Data/log_archive/ folder. When set to false, the audit log is also stored in the Process Director
internal database in addition to the file system.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Allow Process Director to store the audit log in the
    // internal database, in addition to the log file.

bp.Vars.fAuditLogFileOnly = true;
}

nAuditLogDays
This variable enables you to control the number of days that Process Director should retain its audit logs.
Logs will be archived in the /App_Data/log_archive/ folder. This custom variable is available only with
users who have the Compliance edition for on-site installations, or a cloud installation. The default value
for this variable is "7".
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// archives logs for ten days
bp.Vars.nAuditLogDays= 10;

}

nMaxAdminAuditRows
This variable enables you to set the maximum number of audit rows to display. The default is 1000.

236 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum number of audit rows.
bp.Vars.nMaxAdminAuditRows = 1000;

}

sAuditFieldStyle
This string variable enables you to provide custom CSS styling for the appearance of audit fields.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//These are the default CSS styles for audit fields.
bp.Vars.sAuditFieldStyle = "background-color:#FFFF99!important;";

}

sSkipAuditFields
This string variable enables you to optionally list field names for fields you wish to skip when auditing by
providing a comma-separated list of field names. This will also enable you to skip all fields in an array or
section.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.sSkipAuditFields = "fieldname1, fieldName2";
}

Audit Logging Variables
For installations that use the Compliance Edition of Process Director, some audit logging items are sent
to the Windows Event Log, in addition to the audit logging that you can access inside Process Director.
The logging events sent to the Windows Event Log fall into two categories, Informational and Error
entries.
Informational Entries
The following audit events are sent as informational entries to the Windows Event Log:

l Login
l SyncStart
l PasswordChange
l ReInit
l DelegateOn
l DelegateOff
l ImpersonateOn
l ImpersonateOff
l UserDisabled
l UserEnabled

Developer's Reference Guide | 237



BP Logix Inc
Process Director Documentation

l AdminReplaceUser
l CreateUser
l DeleteUser

Error Entries
The following audit events are sent as error entries to the Windows Event Log:

l AuthenticateFailed
l UserLockedOut

Additional Audit log events can be added to the default events by using the EventLogInfoAudits or
EventLogErrorAudits custom variable in the Custom Variables file.

EventLogInfoAudits
This variable enables you to add an event Enum type to the Windows Event Log as an Informational entry.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    Vars.EventLogInfoAudits.Add(AuditType.AuthenticateFailed);
}

EventLogErrorAudits
This variable enables you to add an event Enum type to the Windows Event Log as an Error entry.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    Vars.EventLogErrorAudits.Add(AuditType.UserDisabled);
}

Default Settings Custom Variables
The system defaults are already defined in Process Director, but you can add to or override the default set-
tings by editing the vars.cs.aspx file in the “\Program Files\BP Logix\Process Director\website\custom\”
directory created during the installation.

BusinessHolidays
This variable enables you to control which dates are considered Holidays. The standard US holidays are
included in the default set of business holidays.

New Year’s Day: January 1

Birthday of Martin Luther King Jr: January 20

President’s Day: February 17

Memorial Day: Last Monday in May

Independence Day: July 4

Labor Day: First Monday in September

238 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Columbus Day: October 12

Veterans' Day: November 11

Thanksgiving: Last Thursday in November

Christmas: Friday, December 25

Please note that many holidays fall on a weekend, necessitating Friday or Monday holiday dates that are
different from the official dates. Dates are, of course, hard-coded as the actual holiday dates in the sys-
tem. For Cloud customers, BP Logix updates the default holidays routinely. For on-premise customers,
however, the holidays dates need to be completely replaced on at least a yearly basis, to ensure the cor-
rect dates are marked as holidays in the system. Updating the product will automatically update the cur-
rent default holidays, and this is the preferred solution for keeping the default holidays up to date. Non-
US customers will need to completely replace the default US holiday calendar with a local calendar in the
customization file.

You can simply add holidays to the default calendar by using the BusinessHolidays.Add() method. Sim-
ilarly, you can use the BusinessHolidays.Remove() method to remove a specific holiday from the default
list of holidays.

You can also completely replace the default holiday calendar with a calendar of your own configuration
by creating a new BusinessHolidays HashSet, then using the BusinessHolidays.Add method to add the new
holidays you wish to include in your calendar. You'll need to use the System.Collections.Generic
namespace to create the new HashSet by declaring it, or using it inline.
Example
Datetime declarations are set in the format: year, month, day, so declaring May 12, 2021 as a holiday date
would be done via the syntax:
bp.Vars.BusinessHolidays.Add(new DateTime(2021, 5, 12).Date);

Developer's Reference Guide | 239



BP Logix Inc
Process Director Documentation

Sample Code Block

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
//===========Add Holidays to the Default Calendar==============
    // Christmas Eve, 2020

bp.Vars.BusinessHolidays.Add(new DateTime(2020, 12, 24).Date);
//Boxing Day (Canada, UK), 2020
bp.Vars.BusinessHolidays.Add(new DateTime(2020, 12, 26).Date);

//=============================================================

//===========Create a New Holiday Calendar=====================
// Add a completely new Holiday calendar and overwrite the default

    // US holidays. You must declare the namespace (i.e.
    // Using System.Collections.Generic)or use the namespace inline
    // to create a new HashSet

//Create the new HashSet to overwrite the default holidays
bp.Vars.BusinessHolidays = new HashSet<DateTime>();
//Add the new holidays
//New Year's Day
bp.Vars.BusinessHolidays.Add(new DateTime(2020, 1, 1).Date);
//Canada Day
bp.Vars.BusinessHolidays.Add(new DateTime(2020, 7, 1).Date);
//Independence Day (US)
bp.Vars.BusinessHolidays.Add(new DateTime(2020, 7, 4).Date);

//=============================================================
}

BusinessHourStart
This variable enables you to control when business hours start, and is used in calculations of process due
dates. The default value is "8" (8:00 AM).
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This organization's business day starts at 7am

bp.Vars.BusinessHourStart = 7;
}

BusinessHourStop
This variable enables you to control when business hours end, and is used in calculations of process due
dates. The default Value is "17" (5:00 PM).
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This organization's business day ends at 5pm
bp.Vars.BusinessHourStop = 17;

}

CheckReminderBusinessHours
This variable enables you to control if process reminders should be sent ONLY during business hours. The
default value for this variable is "true".

240 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Only send reminders during business hours

bp.Vars.CheckReminderBusinessHours = true;
}

DefaultHTMLEncode
This variable enables you to set HTML as the default encode type for Form system variables.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//Set HTML as the default encode type for Form System variables.
bp.Vars.DefaultHTMLEncode = true;

}

DefaultInviteEmail
This variable enables you to set your own .ascx file as the default invite email
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Custom ASCX file to use as invite email
bp.Vars.DefaultInviteEmail = "~/custom/YourCustomInviteEmail.ascx";

}

DefaultPasswordEmail
This variable enables you to set your own .ascx file as the default password reminder email. When con-
structing this email message, you'll want to create a link to the correct password change page for the
user. Creating this link will require the use of a system variable formatter, PWD_GUID, which is a special
formatter for use with password changes. This formatter returns the Password Change GUID for the user.
This value is returned from the guidPwdChange field from the tblUser table in the Process Director data-
base. This field value is saved to the database when the user requests a password reset and it is reset as
soon as they log in.

To construct the URL for the password change page in your custom email, you can have the URL dynam-
ically constructed using the following syntax:
{INTERFACE_URL}user_password_reset.aspx?pwdguid={EMAIL_USER,format=PWD_GUID}

The Interface URL system variable will return the interface URL setting from your system to return the
base URL for the Process Director server, followed by a slash. The Email User system variable, using the
PWD_GUID formatter, will return the Password Change GUID that was set for the user when they asked for
a password reset.

With this syntax, the requesting user will receive an email with the correct link to the password reset page
for their specific password reset request.

Developer's Reference Guide | 241

Parameters.htm#EncodeTypes


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Custom ASCX file to use as password reminder email
bp.Vars.DefaultPasswordEmail = "~/custom/YourCustomPasswordEmail.ascx";

}

DefaultTimelineEmail
This variable enables you to set your own .ascx file as the default Timeline email.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Custom ASCX file to use as Timeline email
bp.Vars.DefaultTimelineEmail = "~/custom/YourCustomDefaultEmail.ascx";

}

DefaultWorkflowEmail
This variable enables you to set your own .ascx file as the default process email template.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Custom ASCX file to use as process email template
bp.Vars.DefaultWorkflowEmail="~/custom/YourCustomDefaultEmail.ascx";

}

DisabledTabsDisabled

This Custom Variable was deprecated in Process Director v5.45.100, and should no longer be
used. Instead, appropriate conditions should be assigned to tabs via the UI. It remains in the
product for legacy customers only.

This variable, when set to "true", enables users to disable individual tabs in form definitions that use the
TabStrip/TabContent controls. The default for this option is "False".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Enable Tab Control disabling

bp.Vars.DisabledTabsDisabled = true;
}

ForceMobileAdvanced
This variable, when set to "true", will make every connection to Process Director a mobile device con-
nection. Even Desktop connections will be presented as mobile connections. This can he helpful for pre-
venting some mobile devices from trying to use the Desktop UI for Process Director.

242 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Force mobile connection

bp.Vars.ForceMobileAdvanced = true;
}

ForceHttpOnlyCookies
This variable, when set to "true", will force the the “HttpOnly” attribute be used on session cookies in the
browser. The default value for this variable is "false".

Enabling this setting will prevent the use of the BP Logix plugin for editing Word-based forms.

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Force HttpOnly attribute for session cookies

bp.Vars.ForceHttpOnlyCookies = true;
}

ForceSecureCookies
This variable, when set to "true", will force the “Secure” attribute be used on session cookies in the
browser. The default value for this variable is "false".

This setting is only valid for https sessions.

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Force secure cookies for HTTPS

bp.Vars.ForceSecureCookies = true;
}

RefreshParentWorkspaces
This variable, when set to the default value of "true", enables the home workspace to be refreshed after
completing tasks from an email. To disable this feature, set the value to "false".
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Turn off workspace refresh

bp.Vars.RefreshParentWorkspaces = false;
}

RemoveSIDFromJS

Developer's Reference Guide | 243



BP Logix Inc
Process Director Documentation

By default, this variable is set to "true" which prevents the Windows Session ID from being transmitted via
JavaScript. Some older versions of Internet Explorer, however, require Session IDs to be passed on the
URL for popup windows that are opened via JavaScript. So, if you encounter this scenario, set this variable
to "false".
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Pass the SID via JavaScript to popup windows

bp.Vars.RemoveSIDFromJS = false;
}

LDAP Custom Variables
You can alter the way Process Director interoperates with LDAP, defines LDAP users, authenticates with
LDAP, and other functions by using the custom variables in this section.

Properties
fAuthFastLDAP
This a boolean value that determines whether "fast" LDAP authentication will be used. The default is
False.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAuthFastLDAP = true;
}

fAuthLDAP
This a boolean value that determines whether LDAP authentication is enabled. The default is False.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAuthLDAP = false;
}

fAuthLDAPEx
This a boolean value that determines whether LDAP authentication using the extended LDAP API is
enabled. The default is False.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAuthLDAPEx = false;
}

fAuthLDAPAutoAdd

244 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This a boolean value that determines whether LDAP users will automatically be added as Process Director
users after authentication. The default is False.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAuthLDAPAutoAdd = false;
}

LDAP_DisplayName_Field
This a string value that contains the name of the LDAP field containing the GUID property of the user
record. In Active Directory, this would be "displayName".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_DisplayName_Field = "Display Name";
}

LDAP_Email_Field
This a string value that contains the name of the LDAP field containing the user's email address. In Active
Directory, this would be "mail".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_Email_Field = "mail";
}

LDAP_GUID_Field
This a string value that contains the name of the LDAP field containing the GUID property of the user
record. In Active Directory, this would be "objectGUID".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_GUID_Field = "ObjectGUID";
}

LDAPEx_ReferralChasing
When set to the default value of ReferralChasingOption.All, this variable tells the LDAP server to forward
the authentication to all other servers. This is used when the LDAP server containing the user records is
for a different domain than the domain against which you wish to authenticate.

The possible options for referral chasing are:

l All: Chase referrals of either the subordinate or external type.
l External: Chase external referrals.

Developer's Reference Guide | 245



BP Logix Inc
Process Director Documentation

l None: Never chase the referred-to server. Setting this option prevents a client from contacting other
servers in a referral process.

l Subordinate: Chase only subordinate referrals which are a subordinate naming context in a directory
tree. The ADSI LDAP provider always turns off this flag for paged searches.

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAPEx_ReferralChasing = ReferralChasingOption.All;
}

LDAP_PageSize
This a integer value that enables you to set a custom page size for the LDAP records to be returned. The
default value is 0. Be advised that setting this value may cause some LDAP servers to crash. The max-
imum page size recommended for Active Directory is 1000.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_PageSize = 0;
}

LDAP_URL
This a string value that contains the URL of the LDAP server.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_URL = "ldap://LdapServerName.com";
}

LDAP_UserID_Field
This a string value that contains the name of the LDAP field containing the User ID. In Active Directory,
this would be "sAMAccountName".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_UserID_Field = "sAMAccountName";
}

List Maximum Custom Variables
These system variables enable you to specify the maximum number of records that are returned by vari-
ous system lists, such as the maximum number of Knowledge View roes, User/Group Picker rows, etc.

nKViewBuiltinMaxResults

246 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This variable enables you to set the maximum entries that any KView can return. The default value for
this variable is "1000".
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set maximum number of KView returns to 900 records
bp.Vars.nKViewBuiltinMaxResults = 900;

}

nMaxAdminPermRows
This variable enables you to set the maximum number of administrative permissions rows to display. The
default is 1000.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum number of admin permissions rows.
bp.Vars.nMaxAdminPermRows = 1000;

}

nMaxAdminRows
This variable enables you to set the maximum number of rows in the Admin section for any list. The
default is 100.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the maximum number of rows to 400 in any list of
    // the admin section.

bp.Vars.nMaxAdminRows = 100;
}

nMaxAdminRowsGroupFilter
On the User Admin page, there is a search box that will enable you to search for a specific user by typing
in a text string. By default, Process Director will include Group names in that search. However, for a large
number of users, searching the Group names as part of this search adds unacceptable overhead to the
search function. If the number of users in the system exceeds this value, the search function on the User
Admin page will stop using Group names as part of the search. The default value is 10000.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the maximum number of rows before stopping
    // the use of Group names as a search criteria in User Admin.

bp.Vars.nMaxAdminRows = 10000;
}

nMaxBusinessValueRows

Developer's Reference Guide | 247



BP Logix Inc
Process Director Documentation

This variable sets the maximum number of rows that will be returned by a Business Value. The default is
200.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{
    //Default is 200

bp.Vars.nMaxBusinessValueRows = 100;
}

nMaxGroupDropdownRows
This variable enables you to set the maximum number of dropdown rows that appear in a Group Picker
control that is displayed as a dropdown control.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum number of user dropdown rows.
bp.Vars.nMaxGroupDropdownRows = 15;

}

nMaxProfileButtons
This variable enables you to set the maximum number of buttons an administrator can configure in a pro-
file. These buttons are show at the top of each user’s home page, and the default is 12.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the maximum number of buttons an admin can
    // configure.

bp.Vars.nMaxProfileButtons = 12;
}

MaxUploadSize
This string variable enables you to set the maximum size, in bytes, for file uploads and attachments.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set max upload size to 1MB.
    CV.MaxUploadSize = 1000000;
}

nMaxUserDropdownRows
This variable enables you to set the maximum number of dropdown rows that appear in a User Picker con-
trol that is displayed as a dropdown control.

248 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum number of user dropdown rows.
bp.Vars.nMaxUserDropdownRows = 15;

}

nMaxUserPermsRows
This variable enables you to set the maximum number of user permissions rows to display. The default is
1000.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the maximum number of user permissions rows.

bp.Vars.nMaxUserPermsRows = 1000;
}

Logs Custom Variables
These Custom Variables enable you to specify settings to control how Process Director's logging features
operate.

fEnableDatabaseLogs
Process Director v4.55 and higher logs XML import events, goal evaluations, and Active Directory syncs by
default, which means that the default value for this variable is "true". This logging can be turned off by
setting this variable to false.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Turn off database logging for imports, AD Syncs, etc.
bp.Vars.fEnableDatabaseLogs = false;

}

fKeepADSyncInfoLogs
This variable, when set to "false", will prevent the Active Directory Sync Log History from from logging
most events at the "info" level (i.e., it will only log warnings and errors). This should substantially reduce
the number of logs in the tblLogs table in the database, but you may still want to clear out the old logs
prior to setting this variable. You can do so by adjusting the nImportLogSyncDays variable to 0, then run-
ning the global timer routines in the Troubleshooting window. Once complete, you can reset nIm-
portLogSyncDays to the desired value. This Variable can be used in conjunction with the
nMaxADSyncLogEvents variable to control the length of AD synchronization audit logs. The default value
for this variable is "true".

Developer's Reference Guide | 249

Creating an AD Sync Profile.htm#SyncLogHistory


BP Logix Inc
Process Director Documentation

Prior to Process Director v5.3, clearing out the old logs requires resetting the nImportLogDays
Custom Variable. The nImportLogDays was deprecated in v5.3 and replaced with nIm-
portLogSyncDays.

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Prevent detailed AD Sync logging
    Vars.fKeepADSyncInfoLogs = false;
}

nArchiveLogDays
This variable enables you to control the number of days that Process Director should retain its logs. Logs
will be archived in the /App_Data/log_archive/ folder. This custom variable is available only with users who
have the Compliance edition for on-site installations, or a cloud installation.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nArchiveLogDays = 7; // archives logs for a week
}

nImportLogDays

This Custom Variable has been deprecated in Process Director v5.3.

Process Director v4.55 and higher logs XML import events, goal evaluations, and Active Directory syncs by
default, and stores the logs for 30 days. This variable enables you to change the duration from 30 days, to
a number of days of your choice.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Keep logs for 45 days
bp.Vars.nImportLogDays = 45;

}

nImportLogGoalDays
Process Director v5.3 and higher logs goal evaluations by default, and stores the logs for 30 days. This
variable enables you to change the duration from 30 days, to a number of days of your choice.

250 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Keep Goal logs for 2 days
bp.Vars.nImportLogGoalDays = 2;

}

nImportLogImportDays
Process Director v5.3 and higher logs XML imports by default, and stores the logs for 30 days. This vari-
able enables you to change the duration from 30 days, to a number of days of your choice.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Keep XML import logs for 15 days
bp.Vars.nImportLogImportDays = 15;

}

nImportLogKVRunDays
Process Director v5.3 and higher logs Knowledge View executions by default, and stores the logs for 30
days. This variable enables you to change the duration from 30 days, to a number of days of your choice.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Keep KV run logs for 5 days
bp.Vars.nImportLogKVRunDays = 5;

}

nImportLogMLPublishDays
Process Director v5.3 and higher logs Machine Learning object publications by default, and stores the logs
for 30 days. This variable enables you to change the duration from 30 days, to a number of days of your
choice.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Keep ML Pub logs for 5 days
bp.Vars.nImportLogMLPublishDays = 5;

}

nImportLogSArunDays
Process Director v5.3 and higher logs Stream Action runs by default, and stores the logs for 30 days. This
variable enables you to change the duration from 30 days, to a number of days of your choice.

Developer's Reference Guide | 251



BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Keep SA run logs for 5 days
bp.Vars.nImportLogSArunDays = 5;

}

nImportLogSyncDays
Process Director v5.3 and higher logs Active Directory synchronizations by default, and stores the logs for
30 days. This variable enables you to change the duration from 30 days, to a number of days of your
choice.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Keep AD Sync logs for 5 days
bp.Vars.nImportLogSyncDays = 5;

}

nMaxADSyncLogEvents
This variable sets the maximum number of synchronization log events that will be displayed on the Active
Directory Sync Log History page.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{
    //Default is 200

bp.Vars.nMaxADSyncLogEvents = 100;
}

nMaxLogBackups
This variable enables you to set the maximum number of log files. After a log file reaches the size con-
figured by nMaxLogFileSize, it will “wrap” in a circular log file queue.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Keep a maximum of 20 wrapping log files
bp.Vars.nMaxLogBackups = 20;

}

nMaxLogFileSize
This variable enables you to set the maximum size of the wrapping log files. Specify this value in kilobytes.

252 | Developer's Reference Guide

Creating an AD Sync Profile.htm#SyncLogHistory
Creating an AD Sync Profile.htm#SyncLogHistory


BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum log file size to 3 meg.
bp.Vars.nMaxLogFileSize = 3000;

}

Miscellaneous Variables
There are a variety of miscellaneous custom variables that you can set to determine how some Process
Director features or functions work.

fAllowV6Import
This variable enables you to control whether the iMarkup Server V6 import option appears in the Content
List.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAllowV6Import = true;
}

fCONTAINSUseValueSearchOnly
When using full-text search operators, such as (Contains (Lexical) search operations may take a long time,
especially when searching many records containing long text fields. This custom variable can speed up the
operation of full text searches by limiting the search to the first 256 characters of the field being
searched. While this may substantially speed up the search operation, it also reduces the accuracy of the
search results, as search terms that aren't included in the first 256 characters of the field will be ignored.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Speed up full-text searching

bp.Vars.fCONTAINSUseValueSearchOnly = true;
}

fEnableMultFormFieldsInCols
This Boolean variable enables Knowledge View designers to mix the use of the form field chooser from
the Choose System Variable dialog box and FORM system variables in Knowledge View columns in
Knowledge Views that return results from multiple Form Definitions. The default value for this variable is
"True". Setting this variable to "False" will require that all fields be chosen from the Field Chooser.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Allows mixing methods for choosing form fields in KView Columns.
bp.Vars.fEnableMultFormFieldsInCols = true;

}

Developer's Reference Guide | 253



BP Logix Inc
Process Director Documentation

fEnableTransOnKVIEW
When true, this option enables running a SQL transaction prior to running the command to run a Know-
ledge View. Once the Knowledge View has been run, the transaction is rolled back. Running the trans-
action will aide in database concurrency for complex filtering on the Knowledge View, using the
IsolationLevel.ReadUncommitted functionality on SQL Server only. This isn't enabled for Oracle because
Oracle only supports ReadCommitted and Serializable, which would commit the transaction to the data-
base. The default value for this variable is "true". Setting the value to "false" will prevent the SQL trans-
action from running.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Disables running the automatic SQL Transaction

bp.Vars.fEnableTransOnKVIEW = false;
}

fEnableTransOnSELECT
Knowledge Views use a transaction that will aide in database concurrency for complex filtering on the
Knowledge View. This is done by having a transaction around the KVIEW SELECT. The default is to enable
this functionality, but it can be turned off by setting this in the custom vars:

This function is only applicable on SQL Server (not Oracle).
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Disables running the automatic SQL Transaction

bp.Vars.fEnableTransOnSELECT = false;
}

fFormDataTrans
When true, this system variable enables database transactions for certain form field updates.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Enables transactions for some form field updates

bp.Vars.fFormDataTrans = true;
}

fFormSaveUpdatesOnly
When true, this system variable ensures that, when saving (submitting) Forms, only modified fields will be
updated in the database. This option's default setting is "true". This setting enhances system per-
formance.

254 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fFormSaveUpdatesOnly = true; // Saves only updated form data
}

fFormSkipDisableFieldsSave
When set to "true", this system variable ensures that disabled form fields can't be edited via client
JavaScript, and only set via server directives, when additional security is desired. For Cloud installations of
Process Director, the default value for this variable has been set to "true". For all other versions, the
default value of this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disables JavaScript changes to disabled fields
bp.Vars.fFormSkipDisableFieldsSave = true;

}

fFormSkipHiddenFieldsSave
When set to "true", this variable ensures that hidden form fields can't be edited via client JavaScript, and
only set via server directives, when additional security is desired. For Cloud installations of Process Dir-
ector, the default value for this variable has been set to "true". For all other versions, the default value of
this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disables JavaScript changes to hidden fields
bp.Vars.fFormSkipHiddenFieldsSave = true;

}

fHideLabelsFromConditions
For Process Director v5.33 and higher, setting this variable to "true" hides certain controls (Comment Log,
Buttons, Button Area, Embedded Sections, Routing Slip, Labels) from the condition builder. These fields
are generally not used to store data, so may not be needed in the Condition Builder. The default value for
this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Hides non-data fields from the Condition Builder
bp.Vars.fHideLabelsFromConditions = true;

}

fListenToEmailSetting

Developer's Reference Guide | 255



BP Logix Inc
Process Director Documentation

This variable when set to true, will force the activity/step to use the "participants when activity starts"
checkbox to determine if an email should be sent. Previously an email was unconditionally sent when a
user was added/reassigned in a running step/activity by an administrator. The default value for this vari-
able is false.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//Use the task's email setting for administrative task change notifications
bp.Vars.fListenToEmailSetting = true;

}

fPDFCreateOtherAsAttachments
This variable enables you to control whether the CreatePDFFromDocument API will create a container
PDF file for documents that can't be converted directly to a PDF file.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Create container PDF file for non-convertible documents
bp.Vars.fPDFCreateOtherAsAttachments = true;

}

FormFieldsAllowDisabledURLUpdate
This method is configured in the PreSetSystemVars method of the Custom.Vars file. It enables you to spe-
cify the field names for fields whose values you wish to set using a URL parameter. Any field name spe-
cified by this method can have the value modified by a URL parameter on any Form that uses a field with
the specified name.

For instructions on implementing this method, see the Form Definition URL topic in the Implementer's
Reference.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Fields to set via URL Parameter
bp.Vars.FormFieldsAllowDisabledURLUpdate.Add("FieldName1");
bp.Vars.FormFieldsAllowDisabledURLUpdate.Add("FieldName2");

}

fReAuthFillUserID
When set to true, a Process Director user will have to reenter his User ID when prompted for re-authen-
tication. This variable is set to false by default, which means that the User ID is filled in automatically on a
Form’s Re-Authenticate control.

256 | Developer's Reference Guide

Form Definition URL.htm


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Force reauthentication
bp.Vars.fReAuthFillUserID = true;

}

fSkipNextPageCheck
When a user tries to view a page in Process Director while not logged in, he will be redirected to a login
page. After he logs in, he will be directed back to the original page he was attempting to view. This vari-
able is set to false by default. If it is set to false, then the user won't be redirected after logging in if the
URL interface parameter is invalid. This flag may need to be set to true if the users are navigating through
a firewall that changes the URL.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Redirect users after login
bp.Vars.fSkipNextPageCheck = true;

}

fSkipWhereUsedCheck
This variable prevents all usage checking upon the deletion of an object on the Content List. When set to
true, Process Director won't check for the locations in which an object is used. This variable need only be
set to true if Process Director takes too long to present a user with a dialogue showing him where the
object is used upon deletion.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Do not check for object locations
bp.Vars.fSkipWhereUsedCheck = true;

}

fUseAsyncUpload
By default, file uploads for Form attachments occur synchronously with Form submissions, meaning that
the Form submission can't complete until all files are uploaded. Setting this value to "true" enables the
form to be submitted while a separate process performs the file uploads . This can prevent Form sub-
missions from hanging as they wait for large file uploads, or low bandwidth.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

  // Enables files uploads to be processed separately
// from Form submissions
bp.Vars.fUseAsyncUpload = true;

}

Developer's Reference Guide | 257



BP Logix Inc
Process Director Documentation

fWebServiceAllowCredentialsURL
This variable enables callers of web services using REST to pass authentication credentials on the URL.
The default value of this variable is "true". If this variable is set to "false", the fWebServiceAuth custom
variable will also have to be set to false, as there will be no way to pass credentials for authorization.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disable Authentication credentials
    // Requires also setting the fWebServiceAuth var to false

bp.Vars.fWebServiceAllowCredentialsURL = true;
}

nDBCommandTimeout
This variable enables you to set the default database timeout value (normally 30 seconds).
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Set the DB timeout to 60 seconds

bp.Vars.nDBCommandTimeout = 60;
}

nDBTransIsolationLevel
This variable enables you to override the default database transaction isolation level if set to any value
other than "0" or "-1". The default is "0".
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Override the default database transaction isolation level

bp.Vars.nDBTransIsolationLevel = 1;
}

nDebugProcessTimeFactor
This system variable enables you to multiply the configured lengths of Timeline activities by a given
factor. This can be used for test purposes, to shorten the duration of timeline activities relative to their
configured due dates. Set this system variable to the factor by which you wish to multiply the configured
activity durations.

This only works for due dates configured as relative times (e.g. 5 business days). It has no effect on setting
due dates to a form field or a system variable. Use of this feature will also trigger the internal timer pro-
cessing and activity checks on all pages which may hinder performance when enabled.

258 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

// Activities will take 10% as long as they are
    // configured to take

bp.Vars.nDebugProcessTimeFactor = 0.1;
}

nLimitSearchToChars
This variable limits the number of characters to be searched in a form field. This optional setting only
applies when searching for form data using "contains" form data in the filter. The default is no limit. This
variable can provide a performance improvement when searching for form data on systems with millions
of rows.
Example

public override void PreSetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

// Limit the search to only the first 256 characters in the form data fields.
    Vars.nLimitSearchToChars = 256;
}

nWSTimeout
This system variable specifies the time, in milliseconds, that a web service call should wait before timing
out.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // The default timeout time is 10 minutes

bp.Vars.nWSTimeout = 1000 * 60 * 10;
}

sMobileAdvancedTypes
This variable will enable process director to detect additional browser strings for mobile devices.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will add additional browser agent strings for mobile devices

bp.Vars.sMobileAdvancedTypes = "Android 10, iOS 13, [Some Other Browser
Type]";
}

sUploadAddCookie
This variable enables you to identify an HTTP cookie that should be added to the document and Form
upload web service call. Some session managers require a cookie for all page access. If this variable is spe-
cified, the named cookie will be copied to the upload requests using obj_upload.aspx.

Developer's Reference Guide | 259



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // SiteMinder requires the SMSESSION cookie

bp.Vars.sUploadAddCookie = "SMSESSION";
}

ValidationPhonePattern
This variable contains a regular expression used to validate form fields containing phone numbers. See
the example for the default value of this variable:
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Regular expression to use for validating phone numbers
bp.Vars.ValidationPhonePattern =

     @"^(?:(?:[\+]?(?<CountryCode>[\d]{1,3}(?:[ ]+|[\-
     .])))?[(]?(?<AreaCode>[\d]{3})[\-/)]?(?:[ ]+)?)?

(?<Number>[a-zA-Z2-9][a-zA-Z0-9 \-.]{6,})(?:(?:[
     ]+|[xX]|(i:ext[\.]?)){1,2}(?<Ext>[\d]{1,5}))?$";
}

ValidationUrlPattern
This variable contains a regular expression used to validate URL strings. See the example for the default
value of this variable:
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Regular expression to use for validating URLs
bp.Vars.ValidationUrlPattern = @"^(http|https|ftp)\://
[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}(:[a-zA-Z0-9]*)

     ?/?([a-zA-Z0-9\-\._\?\,\'/\\\+&amp;%\$#\=~])*$";
}

ValidationZipCodePattern
This variable contains a regular expression used to validate form fields containing ZIP codes. See the
example for the default value of this variable:
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Regular expression to use for validating zip codes
bp.Vars.ValidationZipCodePattern = @"^(\d{5}-\d{4}|\d{5}\d{9})$";

}

ML and AI Custom Variables
Process Director v5.0 and higher supports custom variables for Machine Learning (ML) and Artificial Intel-
ligence (AI) services. Some of the services are provided by third parties, and require external accounts to

260 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

access those services, while others are integral to Process Director.

Google Sentiment
The Google sentiment service can analyze text submissions for the sentiment the text expresses. Passing
a text string to the Google Sentiment service submits it for analysis, and the Service returns a double-pre-
cision number that ranges from -1.00 to 1.00. A value of 0 is a neutral sentiment. A negative value indic-
ates negative sentiment, while a positive value indicates a positive sentiment. The closer to -1.00 or 1.00
the return value is, the more intense the sentiment expressed. For instance, a return value of 0.85 is a
very positive sentiment.
Required Variables
To configure Process Director for the Google Sentiment service, the custom variables below must be con-
figured:

GoogleSentiment_private_key

This string variable contains the your private key for the Google Sentiment service. This value is provided
to you by Google.

GoogleSentiment_client_email

This string variable contains the email address you used as the client email address for the Google Sen-
timent service.
Optional Variables
GoogleSentiment_project_id

This string variable contains the Project ID for the Google Sentiment service. This value is provided to you
by Google.

GoogleSentiment_private_key_id

This string variable contains the Private Key ID for the Google Sentiment service. This value is provided to
you by Google.

GoogleSentiment_client_id

This string variable contains the Client ID for the Google Sentiment service. This value is provided to you
by Google.

GoogleSentiment_client_x509_cert_url

This string variable contains the URL you used as the x509 Client Certificate for the Google Sentiment ser-
vice.

Developer's Reference Guide | 261



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//The following vars are required:
bp.Vars.GoogleSentiment_private_key = @"YourPrivateKey";
bp.Vars.GoogleSentiment_client_email = "email@address.com";

//The following vars are optional:
bp.Vars.GoogleSentiment_project_id = "YourProjectID";
bp.Vars.GoogleSentiment_private_key_id = "YourPrivateKeyID";
bp.Vars.GoogleSentiment_client_id = "YourClientID";
bp.Vars.GoogleSentiment_client_x509_cert_url =

        "https://YourClientCertURL.com";
}

Mobile Application Custom Variables
Process Director v5.45 and higher enables a separately-licensed Mobile Application Component. This com-
ponent requires custom variables to be configured to implement the component.

The custom variables will be configured by BP Logix for Cloud customers.

nAppenateCompanyID
This numeric variable specifies the Company ID for the mobile application of this Process Director install-
ation.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Mobile Server ID
bp.Vars.nAppenateCompanyID = 1;

}

fEnableFormFieldDownload
This boolean variable, when set to true, enables the display of the Download Field List action link on the
Properties tab of Form definitions.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable Download Field List
bp.Vars.fEnableFormFieldDownload = true;

}

sAppenateIntegrationKey
This string variable specifies the Mobile Server integration Key for the Process Director installation.

262 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//Mobile Server Integration Key
bp.Vars.sAppenateIntegrationKey = "XXXXXXXX-XXXXXXXXX";

}

sMobileWebServerURL
This string variable specifies the URL of the mobile server to use for this Process Director installation.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//Mobile Server URL
bp.Vars.sMobileWebServerURL = "https://mobile.bplogix.com";

}

Password Enforcement Custom Variables
Password enforcement settings variables are only for users using the Compliance or Cloud versions, and
are set in the custom vars file to enforce password strength/security.

ForcePwdChangeEvery
This is an integer value that the number of days to elapse before requiring users to change their pass-
words.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Number of days before password change is required

bp.Vars.ForcePwdChangeEvery = 30;
}

ForgotPasswordRedirectURL
This variable enables you to set the redirect URL to which the user will be referred when the "I forgot my
password" link is selected.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Redirect for forgatten password

bp.Vars.ForgotPasswordRedirectURL = "https://some.url/somePage.htm";
}

fUnlockAcctOnPasswordReset
This variable, when set to true, will automatically unlock a locked user account when they perform a pass-
word reset. The default value for this variable is false.

Developer's Reference Guide | 263



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Unlock account on user password reset

bp.Vars.fUnlockAcctOnPasswordReset = true;
}

LoginFailuresUntilLock
This is an integer value that sets the number of allowed login failures until the account is locked.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Number of allowed login attempts
bp.Vars.LoginFailuresUntilLock = 3;

}

NotifyPwdChangeDays
This variable enables you to set the number of days prior to password expiration to notify the user that a
built-in account password is set to expire.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Notify users 3 days before their password expires
bp.Vars.NotifyPwdChangeDays = 3;

}

PasswordResetRedirectURL
This variable enables you to set the redirect URL to which the user will be referred after a password reset.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Redirect users to this page after a password reset
bp.Vars.PasswordResetRedirectURL = "https://www.SomeURL.Com/SomePage.htm";

}

PwdMinLength
This is an integer value that sets the minimum length of the Password.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password characters
bp.Vars.PwdMinLength = 10;

}

PwdMinLetters

264 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This is an integer value that sets the minimum number of letter characters required.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password letter characters required
bp.Vars.PwdMinLetters = 1;

}

PwdMinLower
This is an integer value that sets the minimum number of lower case characters required.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password lower-case letter characters required
bp.Vars.PwdMinLower = 1;

}

PwdMinUpper
This is an integer value that sets the minimum number of upper case characters required.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password upper-case letter characters required
bp.Vars.PwdMinUpper = 10;

}

PwdMinNumbers
This is an integer value that sets the minimum number of numeric characters required.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password numeric characters required
bp.Vars.PwdMinNumbers = 1;

}

PwdMinSymbols
This is an integer value that sets the minimum number of symbol or special characters required. Any spe-
cial character is allowed.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password special characters required
bp.Vars.PwdMinSymbols= 1;

}

Developer's Reference Guide | 265



BP Logix Inc
Process Director Documentation

PwdNoReuseDays
This is an integer value that sets the minimum number of days that must elapse before a password can be
reused.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// can't reuse a password in this many days
bp.Vars.PwdNoReuseDays = 365;

}

PwdNoReuseNumTimes
This is an integer value that sets the minimum number of password changes that must elapse before a
password can be reused.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// can't reuse a password in this many changes
bp.Vars.PwdNoReuseNumTimes = 10;

}

PwdStrength
This variable enables you set a password strength for user passwords. The default value is "Pass-
wordStrength.Low" which doesn't implement any password enforcement for user accounts. You can set
the following custom password strengths:

PasswordStrength.Low: Requires that the password be at least 4 characters in length.

PasswordStrength.Medium: Requires that the password be at least 8 characters in length, and contain
at least one letter and one number.

PasswordStrength.High: Requires that the password be at least 10 characters in length, and contain at
least one number, one upper case letter, one lower case letter, and one symbol character.

PasswordStrength.Custom: Enables you to set a custom password strength using the variables dis-
cussed in this topic.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Set the required password strength

bp.Vars.PwdStrength = PasswordStrength.High;
}

PwdStrengthMessage
This variable enables you set a string displayed to the users when they change their password (for built-in
users only). This string can be used, for example, to inform users of password strength requirements.

266 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set a message to display to users changing their
    // passwords

bp.Vars.PwdStrengthMessage = "Passwords must be a minimum of 8
     characters and have at least one number”;
}

Setting Custom Password Enforcement Variables
To set a custom password strength in the custom variables file (vars.cs), you must first set the Password
Strength to custom, then add the specific password strength variables that you desire. Below is some
sample code for setting a custom password strength.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set a custom password strength

bp.Vars.PwdStrength = PasswordStrength.Custom;
bp.Vars.ForcePwdChangeEvery = 90;
bp.Vars.LoginFailuresUntilLock = 5;
bp.Vars.PwdMinLength = 8;
bp.Vars.PwdMinLower = 1;
bp.Vars.PwdMinUpper = 1;
bp.Vars.PwdMinNumbers = 1;
bp.Vars.PwdMinSymbols= 1;
bp.Vars.PwdStrengthMessage = "Password must be at least 8 characters,
and must have an upper case letter, a lower case letter, a

     number, and a special character. EXAMPLE: m0squiTo!";
}

Process Administration Custom Variables
You have the option to alter who may use some Process Director functions by restricting their use to Pro-
cess Administrators. The custom variables in this section define which actions can be restricted to process
administrators.

fDisableAsyncWorkflow
This boolean variable, when set to true, will disable any asynchronous process steps in a process defin-
ition. The default value is false. This setting is primarily for use in development systems.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fDisableAsyncWorkflow = true; // Disable async processes
}

fInternalDSPadminOnly
This boolean variable sets whether only Process Administrators are allowed to configure internal Data-
sources. The default value is true.

Developer's Reference Guide | 267



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fInternalDSPadminOnly = true; // Only P-Admins can config
}

fInternalUserDSPadminOnly
This boolean variable sets whether only Ptocess Administrators are allowed ro configure internal user
Datasources. The default value is true.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fInternalUserDSPadminOnly = true; // Only P-Admins can config
}

fNewSkipPendingLogic
For Process Director v5.36 and higher, the logic for evaluating the Activity Result system variable was
changed to skip activity instances that were marked as not needed. This can cause an issue for customers
that used the system variable that on conditions to control looping when using the legacy Branch Activ-
ity Type, instead of the Looping conditions on a Parent Activity Type. Setting this variable to "false" dis-
ables the new logic. The default value for this variable is "true".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Use the old Activity Result logic for Branch activities

bp.Vars.fNewSkipPendingLogic = false;
}

fReportViewsPadminOnly
This boolean variable sets whether only Process Administrators are allowed to configure views in reports.
The default value is true.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fReportViewsPadminOnly = true; // Only P-Admins can config
}

fScriptsPadminOnly
This boolean variable sets whether only System Administrators are allowed to configure scripts in Forms,
Process Timelines, and Knowledge Views. The default value is false.

268 | Developer's Reference Guide

Timeline Activity System Variables.htm#ActivityResult


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fScriptsPadminOnly = false; // Anyone can config
}

nAsyncSubProcessWaitSecs
This variable enables you to control the number of seconds that Process Director should wait for an asyn-
chronous subprocess to complete. On some systems, when starting a subprocess using the "Run Asyn-
chronously" and the "Wait for subprocess to complete" options, the system can mark the calling task as
complete before the called subprocess completes. This may be especially true if the subprocess contains
complex rendering operations. This variable adds a 5-second wait time as a default, to help ensure the
subprocess has time to complete.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Wait 5 seconds before marking the
    // calling task as complete

bp.Vars.nAsyncSubProcessWaitSecs = 5;
}

Reporting Tool Custom Variables
These variables are available in Cloud Installations, or on-premise installations with the Advanced Report-
ing option. The custom variables in this section enable you to change the default settings of the reporting
tool included with the advanced reporting option.

fReportShowExportTo…
The reporting tool has several Boolean variables that determine whether reports can be exported to spe-
cific file formats. All of these variables have similar names, and are all listed below, along with their
default values.
Export Variables

VARIABLE NAME EXPORT FILE FORMAT DEFAULT
VALUE

fReportShowExportToBmp Bitmap Image False

fReportShowExportToCsv Comma-separated Text True

fReportShowExportToDbf dBase False

fReportShowExportToDif Data Interchange Format False

fReportShowExportToDocument Word 2010 and higher False

fReportShowExportToExcel Excel 2010 and higher False

fReportShowExportToExcel2007 Excel 2007 True

Developer's Reference Guide | 269



BP Logix Inc
Process Director Documentation

VARIABLE NAME EXPORT FILE FORMAT DEFAULT
VALUE

fReportShowExportToExcelXml Excel XML False

fReportShowExportToGif GIF Image False

fReportShowExportToHtml HTML True

fReportShowExportToJpeg JPEG Image False

fReportShowExportToMetafile Enhanced Metafile False

fReportShowExportToMht MHTML Archive True

fReportShowExportToOpenDocumentCalc Open Document Format for LibreOffice
Calc

False

fReportShowExportToOpenDocumentWriter Open Document Format for LibreOffice
Writer

False

fReportShowExportToPcx PCX Image False

fReportShowExportToPdf Adobe PDF True

fReportShowExportToPng PNG Image True

fReportShowExportToPpt PowerPoint True

fReportShowExportToRtf Rich text File True

fReportShowExportToSvg Scalable Vector Graphics False

fReportShowExportToSvgz Compressed Scalable Vector graphics False

fReportShowExportToSylk Symbolic Link (Microsoft) False

fReportShowExportToText Text True

fReportShowExportToTiff TIFF Image True

fReportShowExportToWord2007 Word 2007 True

fReportShowExportToXml XML True

fReportShowExportToXps Open XML False

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Do not show export to BMP option
bp.Vars.fReportShowExportToBmp = false;

}

BaseURLFromRenderingServer
This string variable contains the base URL for the production server for which rendering operations will be
performed, and should be configured only on a licensed Rendering Server.

270 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//Base Server URL
bp.Vars.BaseURLFromRenderingServer = "http://productionserver.com";

}

ReportRemoteURL
This string variable contains the URL for a licensed Rendering Server, and should be configured only on
the production server.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//Rendering Server URL
bp.Vars.ReportRemoteURL = "http://renderingserver.com";

}

sReportInterfaceURL
This string variable contains the URL for the report viewer interface, if you wish to exercise the option to
use a different URL for the report interface.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

//Report Server URL
bp.Vars.sReportInterfaceURL = "http://servername.com/reports.aspx";

}

REST Custom Variables
Custom variables in this section of the documentation can be used to customize a variety of settings asso-
ciated with using a Business Value to return data from a REST data source.

DefaultBVRestAccept
A string variable that determines the default format for results from a REST web service call by a Business
Value. The default value is "XML".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set default REST returns as XML
bp.Vars.DefaultBVRestAccept = "XML";

}

DefaultBVRestMethod
A string variable that determines the default method for returning results from a REST web service call by
a Business Value. The default value is "POST".

Developer's Reference Guide | 271



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set default REST return method
bp.Vars.DefaultBVRestMethod = "POST";

}

DefaultBVRestContentType
A string variable that determines the default REST Content Type for a web service call by a Business
Value. The default value is "application/XML".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set default REST content type
bp.Vars.DefaultBVRestContentType = "application/XML";

}

DefaultBVRestHeaders
This Custom Variable implements an Add method that enables you to specify custom REST HTTP headers
for a web service call by a Business Value.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Add REST header
bp.Vars.DefaultBVRestHeaders.Add(new NameValue("Name", "Value"));

}

DefaultBVRestCredentials
This Custom Variable enables you to specify the default network credentials to supply to a REST web ser-
vice call by a Business Value.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Default REST credentials
bp.Vars.DefaultBVRestCredentials =
new System.Net.NetworkCredential("UserID","password");

}

SAML Custom Variables
Custom variables in this section of the documentation can be used to customize a variety of settings asso-
ciated with Using SAML/Federated Identity when working with SAML providers.

AddSAMLGroups
A Boolean variable that determines whether Process Director should add any Groups from a SAML login
that Process Director doesn't already have.

272 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Automatically create new SAML groups
bp.Vars.AddSAMLGroups = true;

}

AddSAMLGroupsIgnore
This variable consists of a list of Group names to ignore in the auto-add logic (AddSAMLGroups )on the
SAML login. E.g. if the SAML login includes an "admin" group, but you don’t want a SAML login to auto-
matically add anyone to the pre-existing "admin" group in Process Director.
Examples

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// SAML Groups to ignore in the SAML import
    List<string> IgnoreGroups = new List<string>();

IgnoreGroups.Add(@"admin");
IgnoreGroups.Add(@"Administrators");
bp.Vars.AddSAMLGroupsIgnore= IgnoreGroups;

}

OR

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// SAML Groups to ignore in the SAML import
bp.Vars.AddSAMLGroupsIgnore = new List<string> { "admin", "Administrators" };

}

EXT_User_AutoCreate
A Boolean variable that determines whether Process Director should automatically create user accounts
for externally authenticated users. The default value is "true". Setting the variable to "false" will prevent
the automatic creation of user accounts.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Automatically create user accounts for externally authenticated users
bp.Vars.EXT_User_AutoCreate = true;

}

EXT_User_AutoCreateDisabled
A Boolean variable that determines whether the user accounts that are automatically created from
external authentication should be initially set as disabled. The default value is "false". Setting the variable
to "true" will initially set automatically created user accounts as disabled.

Developer's Reference Guide | 273



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Initially set automatically created user accounts as disabled
bp.Vars.EXT_User_AutoCreateDisabled = true;

}

fAuthSAMLAllowDuplicateUserIDs
This variable, when set to true, enables the use of duplicate User ID's when using SAML authentication.
This requires that the SAML assertion send a unique GUID or identifier for the users. The default value for
this variable is false.

Please note that the use of duplicate userIDs isn't recommended.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// If set to true, duplicate UserIDs will be allowed
    // when using SAML authentication

bp.Vars.fAuthSAMLAllowDuplicateUserIDs = true;
}

MatchSAMLGroups
This variable, when set to true, will, when group membership is specified in the SAML assertion, match the
group assignments of an imported user to existing groups on the Process Director installation. When activ-
ated, the following import actions will occur to accomplish the group matching:

1. Users will be removed from group membership in existing groups that don't exist in the SAML asser-
tion, with the exception of groups that do not have AuthType set to SAML.

2. Users will be added to groups of which they aren't currently a member if the group exists in the
SAML assertion. Users will be added to the groups, even if the group does not have AuthType set
to SAML.

In other words, if a Process Director User Group exists that has the same name as a SAML group contained
in the assertion, but the existing group does not have AuthType set to SAML, the user import will ensure
the user is always added to, but never removed from, the existing group.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Match SAML groups with PD group membership
bp.Vars.MatchSAMLGroups = true;

}

SAML_Enable
A Boolean variable that determines whether to require that SAML login. Setting the value to "true" will
require the SAML login. The default value is "false".

274 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Require SAML login
bp.Vars.SAML_Enable = true;

}

SAML_Enable_ SLO
For Process Director v6.0.100 and higher, this Boolean variable determines whether to enable Azure
Single Sign-Out for SAML. Setting the value to "true" will when logging out of Process Director, also com-
pletely log the user off the SAML Identity Provider (Azure). The default value is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable SAML Single Sign-Out for Azure
bp.Vars.SAML_Enable_SLO = true;

}

SAML_URL
A string variable that sets the URL of the SAML identity provider.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// SAML IDP URL
bp.Vars.SAML_URL = "http://www.SAMLProviderURL.com";

}

SAML_URL_Destination
A string variable that sets the optional Destination URL of the SAML Identity Provider, i.e., the URL in
SAML request Destination field.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// SAML Destination URL
bp.Vars.SAML_URL_Destination = "http://www.SAMLProviderURL.com";

}

SAML_Artifact_URL
A string variable that sets the optional Identity Provider artifact URL.

Developer's Reference Guide | 275



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// SAML Optional IDP URL
bp.Vars.SAML_Artifact_URL = "http://www.SAMLProviderURL.com";

}

SAML_NextURLInRelayState
A Boolean variable that determines whether the "next URL" is set inside the relay state variable. The
default value is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable URL relay
bp.Vars.SAML_NextURLInRelayState = true;

}

SAML_My_PFX
A string variable that sets the optional path to the PFX file used to sign SAML requests.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// PFX file location
bp.Vars.SAML_My_PFX = "C:\File\Path";

}

SAML_My_PFXPassword
A string variable that sets the optional password of the PFX file used to sign SAML requests.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// PFX file password
bp.Vars.SAML_My_PFXPassword = "password";

}

SAML_My_Certificate
A string variable that sets the optional path to your public certificate used for SAML requests.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Certificate path
bp.Vars.SAML_My_Certificate =

     "https://www.certificateURL.com/path/certificate.cer";
}

276 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

SAML_IP_Certificate
A string variable that sets the optional path to the identity provider's public certificate used to validate
the entire SAML response.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// IDP certificate path
bp.Vars.SAML_IP_Certificate =

     "https://www.certificateURL.com/path/certificate.cer";
}

SAML_IP_AssertionCertificate
A string variable that sets the optional path to the identity provider's public certificate used to validate
the assertions in the SAML response.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Assertion certificate path
bp.Vars.SAML_IP_AssertionCertificate =

     "https://www.certificateURL.com/path/certificate.cer";
}

SAML_Attrib_GUID
A string variable that sets the name of the attribute containing the User GUID.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// GUID attribute
bp.Vars.SAML_Attrib_GUID = "AttributeName";

}

SAML_Attrib_UserID
A string variable that sets the name of the attribute containing the UserID.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// User ID attribute
bp.Vars.SAML_Attrib_UserID = "AttributeName";

}

SAML_Attrib_UserName
A string variable that sets the name of the attribute containing the UserName.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Username attribute
bp.Vars.SAML_Attrib_UserName= "AttributeName";

}

Developer's Reference Guide | 277



BP Logix Inc
Process Director Documentation

SAML_Attrib_Email
A string variable that sets the name of the attribute containing the User's email address.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Email attribute
bp.Vars.SAML_Attrib_Email = "AttributeName";

}

SAML_Attrib_CustomString
A string variable that sets the name of the attribute containing a Custom String.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Custom string attribute
bp.Vars.SAML_Attrib_CustomString = "AttributeName";

}

SAML_Attrib_CustomString2
A string variable that sets the name of the attribute containing a second Custom String.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Custom string 2 attribute
bp.Vars.SAML_Attrib_CustomString2 = "AttributeName";

}

SAML_Attrib_CustomNumber
A string variable that sets the name of the attribute containing a Custom Number.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Custom number attribute
bp.Vars.SAML_Attrib_CustomNumber = "AttributeName";

}

SAML_Attrib_CustomDate
A string variable that sets the name of the attribute containing a Custom Date.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Custom date attribute
bp.Vars.SAML_Attrib_CustomDate = "AttributeName";

}

SAML_Attrib_Groups
A string variable that sets the name of the attribute containing the User Groups.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// User groups attribute

278 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

bp.Vars.SAML_Attrib_Groups = "AttributeName";
}

SAML_Issuer
An optional string variable that sets the ID of the SAML issuer. This ID is sometimes the same as the
EntityId.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// SAML Issuer ID attribute
bp.Vars.SAML_Issuer = "IssuerID";

}

SAML_ProviderName
An optional string variable that sets the ProviderName of the SAML issuer.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// SAML provider name attribute
bp.Vars.SAML_ProviderName = "ProviderName";

}

SAML_NoLoginButton
A Boolean variable that determines whether the SAML login button will be removed from the home page.
The default value is "false". Setting the variable to "true" will hide the login button.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Hide the SAML login button
bp.Vars.SAML_NoLoginButton = true;

}

Social Media Custom Variables
Process Director enables you to connect to a variety of Social Media Datasources. For the purposes of this
documentation, we will include other services, such as Microsoft Dynamics, even though they aren't clas-
sified as social media connections, since the connections are implemented in the same fashion as social
media connections.

Social Media Connections
There are four sysvar types that you can use when creating social media connections:

1. ConnectionString: String value. The Connection string used to connect to the social media source.
The connection string for each social media connector already have default values in Process Dir-
ector that automatically use the appropriate OAuth app tokens and token secrets to connect to
the data source. They should not, therefore, require customization. You may, of course, cus-
tomize these connection strings if necessary. For Microsoft OneDrive, Dropbox, and Box.Net, the

Developer's Reference Guide | 279



BP Logix Inc
Process Director Documentation

Connection String properties aren't needed, but these data sources still implement the remaining
three sysvar types below.

2. Accomplishment: Boolean value. Show the Client token to allow users to customize it.
3. DefaultAppToken: String value. The default OAuth application token for the social media source.
4. Default App Token Secret: String value. The default AOAuth token secret for the social media

source.

Each of the fours sysvar types above are implemented separately for each social media source as follows:

SOCIAL MEDIA SOURCE SYSVAR NAME

Twitter TwitterConnectionString

TwitterShowClientToken

TwitterDefaultAppToken

TwitterDefaultAppTokenSecret

Facebook FacebookConnectionString

FacebookShowClientToken

FacebookDefaultAppToken

FacebookDefaultAppTokenSecret

LinkedIn LinkedInConnectionString

LinkedInShowClientToken

LinkedInDefaultAppToken

LinkedInDefaultAppTokenSecret

Google Sheets GoogleSheetsConnectionString

GoogleShowClientToken

GoogleDefaultAppToken

GoogleDefaultAppTokenSecret

Dropbox DropboxShowClientToken

DropboxDefaultAppToken

DropboxDefaultAppTokenSecret

Microsoft OneDrive OneDriveShowClientToken

OneDriveDefaultAppToken

OneDriveDefaultAppTokenSecret

Box.Net BoxNETShowClientToken

BoxNETDefaultAppToken

BoxNETDefaultAppTokenSecret

280 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

In addition, for users of Federated Identity, Facebook, Twitter and Google, there are tokens and token
secrets specifically for use with federated identity, and which are implemented through the following
string variables:

SOCIAL MEDIA SOURCE SYSVAR NAME

Twitter TwitterDefaultSSOAppToken

TwitterDefaultSSOAppTokenSecret

Facebook FacebookDefaultSSOAppToken

FacebookDefaultSSOAppTokenSecret

Google GoogleDefaultSSOAppToken

GoogleDefaultSSOAppTokenSecret

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Default connection string

bp.Vars.ShowSocialGoogleSheets = true;
bp.Vars. GoogleSheetsConnectionString =
"Offline=false;user={0};password={1};";

}

Social Media Datasource Creation
There is a set of Boolean variables that determine whether specific social media Datasources will display
as available Datasource types when creating new Datasource objects in the Process Director interface. Set-
ting the value to "false" means that the item won't be displayed in the Datasource Type dropdown in the
Create Datasource screen of the Process Director interface.

Developer's Reference Guide | 281



BP Logix Inc
Process Director Documentation

The available variables are listed below.

l ShowSocialTwitter
l ShowSocialGoogleSheets
l ShowSocialAmazonDB
l ShowSocialSalesforce
l ShowSocialFacebook
l ShowSocialDropbox
l ShowSocialLinkedIn
l ShowSocialOneDrive
l ShowSocialBoxNET
l ShowDynamics

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Default connection string

bp.Vars.ShowSocialOneDrive= false;
bp.Vars.ShowDynamics= false;

}

Additional Social Media variables are documented below.

282 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

nTwitterMaxResults
This integer variable enables you to control the number of Twitter results returned from a query. The
default is 1000.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Max Twitter results returned

bp.Vars.nTwitterMaxResults = 1000;
}

AmazonDBConnectionString
This string variable enables you to customize the connection string to Amazon DB. The default value is
shown in the example below.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Default connection string

bp.Vars.AmazonDBConnectionString =
     "Offline=False;Access Key={0};Secret Key={1}";
}

DynamicsConnectionString
This string variable enables you to customize the connection string to Microsoft Dynamics CRM. The
default value is shown in the example below.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Default connection string
bp.Vars.DynamicsConnectionString = "User={0};Password={1};

     Url={2};CRMVersion=CRM 2013;";
}

SalesforceConnectionString
This string variable enables you to customize the connection string to SalesForce. The default value is
shown in the example below.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Default connection string

bp.Vars.SalesforceConnectionString = "User={0};Password={1};
     Security Token={2}";
}

Developer's Reference Guide | 283



BP Logix Inc
Process Director Documentation

System Custom Variables
System-Level Custom Variables can be set to control the general operation of the Process Director install-
ation.

EmbedDocumentTypes
This variable enables you to control document types are displayed using the EMBED tag in the browser.
You can inspect or modify this list.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Add the MP4 file type as one to display using the EMBED tag
bp.Vars.EmbedDocumentTypes.Add("mp4");

}

fAllowUnencodedSysvarsinBV
This variable disables the ability for users to configure a Custom Task or Business Value using
SQL Commands that do not use the proper SQL encoding for variables contained in the SQL Statements.
When set to "false", Process Director won't allow the Custom Task or Business Value to be saved until all
of the variables used in the SQL statement have been given the appropriate SQL-safe encodings specified
in the system Variables Reference Guide. For example, using a parameter in a Business Value's
SQL statement might require the SQL-safe encoding symbol "$" in the parameter variable like this:
SELECT * FROM Training_Vendor WHERE VendorName LIKE '%{$PARAMETER:Vendor}%'

The default value for this custom variable is "true". When set to "true", Process Director will issue a warn-
ing to the user that variables aren't properly encoded, but will allow them to save the configuration.

BP Logix recommends that you set this custom variable to "false", if possible. You may—
indeed, probably—have existing Custom Tasks or Business Values whose variable values aren't prop-
erly encoded, so you should not set this value to "false" until you've ensured that all of your exist-
ing Custom Tasks and Business Values use the proper encodings.

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Prevent saving CT or BV configurations that don't use SQL-safe
    // encodings for variable values.

bp.Vars.fAllowUnencodedSysvarsinBV = false;
}

fCloseEditAfterUpload
If this system variable is set to true, the popup that appears after a check-in will close automatically when
the upload completes.

284 | Developer's Reference Guide

Parameters.htm#EncodeTypes
Parameters.htm#EncodeTypes


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // the popup appearing after a successful check-in will not
    // close while fCloseEditAfterUpload is set to false

bp.Vars.fCloseEditAfterUpload = false;
}

fCopyRefsFromRealProcessToKViewProcess
When starting a process from a Knowledge View against returned form instances, the system will copy all
attachment references from the original process associated with the form instance to the process
instance that is being started by the Knowledge View. This enables Custom Tasks like Convert to PDF and
Export Items to work with the original documents/form instances that are in the original process. The
default behavior can be disabled by setting this custom variable to "false".
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Disable copying of original attachments when a process
    // is initiated via Knowledge View

bp.Vars.fCopyRefsFromRealProcessToKViewProcess = false;
}

fDeleteDocOnRemove
When true, this option immediately deletes documents when not referenced by any other Form instance.
When false, documents are marked for deletion, and actually deleted during normal clean-up processing.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    //Deletes documents immediately when they are removed

bp.Vars.fDeleteDocOnRemove = true;
}

fDisableCSVNumberStringLogic
Prior to v5.31, when importing a CSV with numbers and strings in a column, the system, by default, looked
at the first row of the CSV file to determine the data type. This could result in a data type error when the
first row contains a number and subsequent rows contain character strings. For v5.31 and higher, data
imported will default to the String datatype, unless a different datatype is specified in the header row.
This variable, when set to "true", will disable the new logic, and revert to the pre-v5.31 conversion logic.
The default value for this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Revert to the old CSV field type logic
bp.Vars.fDisableCSVNumberStringLogic = true;

}

Developer's Reference Guide | 285



BP Logix Inc
Process Director Documentation

fDocRenameLogicOff
This variable permits the name of a document object in the content list to be changed to match the name
of the document being checked in, when set to "true". The default value is "false", i.e., that the name in
the content list is retained even if the document being checked in has a different name.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Turn on object renaming
bp.Vars.fDocRenameLogicOff = true;

}

fEnableJavaScriptDev
This variable permits form variables to be set or retrieved from JavaScript, when set to the default value
of "true". Setting this value to "false" disables this behavior.
Vars.cs Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disable JavaScript access to vars
bp.Vars.fEnableJavaScriptDev = false;

}

JavaScript Example
By default, JavaScript can be used to get or set form value for controls that aren't contained in a Form
array. The best practice for this type of use would most often be to insert the JavaScript into an
HTML Control on the Form.

<script>
// Function call to get form data from a Form via JavaScript

    function getVariable()
{

        var frmValue = CurrentForm.FormControls["FORM_VAR"].value;
    }

// Function call to set a Form field value with JavaScript
    function setFieldValue()

{
        var frmValue = "SomeValue";
        CurrentForm.FormControls["FORM_VAR"].value = frmValue;
    }
</script>

fEnableSQLEscape
When you run a SELECT statement that contains a LIKE operator and an ESCAPE clause in SQL Server
2008 R2, SQL Server 2012, or SQL Server 2014, SQL Server may use an inefficient query plan for the state-
ment. Additionally, the performance of the statement is low. This SQL Server bug can cause a per-
formance problem with Knowledge Views searching for form data using "contains", especially when using
the "contains" operator with wildcard characters. This Custom variable, when set to "true", alters the

286 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

operation of these queries to improve performance and help mitigate this SQL Server bug. The default
value for this variable is "false".
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Mitigate SQL Server bug for LIKE/Wildcard queries
bp.Vars.fEnableSQLEscape = true;

}

FileUploadBlacklist
This property accepts a comma-separated string of file extension that, when set, will prevent files with
those file extensions from being uploaded via any attachment control. This property is a universal black-
list of file uploads for files with the listed extensions.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disables upload of listed file types
bp.Vars.FileUploadBlacklist = "dotx, xltx, dot, xlt";

}

FileUploadBlacklistAlternateText
This property enables you to universally set the Allowed File Alternate Text property of Attach
Object controls, instead of setting the property individually in the control.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disables upload of listed file types
bp.Vars.FileUploadBlacklistAlternateText =

     "Word Documents, Excel Spreadsheets, Word Templates, Excel Templates";
}

Locales
Process Director enables the addition of locales by editing the vars.cs file.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // If you comment out the first line,
    // it will append new values to the default list

// Otherwise a new list will be created
Locales = new List<NameValue>();
Locales.Add(new NameValue("English", "en"));

}

ObjectLockingEnable

Developer's Reference Guide | 287

Form Online Controls Attachments.htm#AttachObjects
Form Online Controls Attachments.htm#AttachObjects


BP Logix Inc
Process Director Documentation

This boolean variable enables you to turn off object locking by setting the value to "false". The default
value is "true".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will enable object locking.

bp.Vars.ObjectLockingEnable = true;
}

ObjectLockingForce
This boolean variable enables you to require object locking when set to "true". The default value is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will require object locking when set to true.

bp.Vars.ObjectLockingForce = false;
}

Project Reminder Times
This variable enables you to customize the default reminder times that are displayed in a Timeline Activ-
ity's Notifications tab.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Activity Reminder times
    // If you comment out this next line, it will append new values to
    // the default list
    // Otherwise, a new list will be created

bp.Vars.ProjectReminderTimes= new List<TimeValue>();
bp.Vars.ProjectReminderTimes.Add(new TimeValue(-1 * (60 * 60 * 24),

     "1 Day Before Due"));
bp.Vars.ProjectReminderTimes.Add(new TimeValue(-2 * (60 * 60 * 24),

     "2 Days Before Due"));
bp.Vars.ProjectReminderTimes.Add(new TimeValue(1 * (60 * 60 * 4),

     "Every 4 Hours"));
bp.Vars.ProjectReminderTimes.Add(new TimeValue(1 * (60 * 60 * 24),

     "Every Day"));
bp.Vars.ProjectReminderTimes.Add(new TimeValue(4 * (60 * 60 * 24),

     "Every 4 Days"));
bp.Vars.ProjectReminderTimes.Add(new TimeValue(7 * (60 * 60 * 24),

     "Every Week"));
}

UploadTempPath
This variable enables you to specify a folder to use as a temporary folder when using the Multi-File Upload
functionality with the AttachObjects control. The default system temp path may not release large file
uploads properly. Setting your own folder in the folder system can alleviate this issue.

288 | Developer's Reference Guide

Managing Content Locking.htm
Managing Content Locking.htm


BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set the temporary path for large file uploads
    CV.UploadTempPath = @"m:\tempupload";
}

Workflow Reminder Times
Process Director enables the reminder times in the process definition to be customized in the dropdown
lists.

The Workflow object has largely been deprecated by the Process Timeline. BP Logix recom-
mends the use of the Process Timeline as the process model for all new development.

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Step Reminder times
    // If you comment out this next line, it will append new values to
    // the default list
    // Otherwise, a new list will be created

bp.Vars.StepReminderTimes = new List<TimeValue>();
bp.Vars.StepReminderTimes.Add(new TimeValue(-1 * (60 * 60 * 24),

     "1 Day Before Due"));
bp.Vars.StepReminderTimes.Add(new TimeValue(-2 * (60 * 60 * 24),

     "2 Days Before Due"));
bp.Vars.StepReminderTimes.Add(new TimeValue(1 * (60 * 60 * 4),

     "Every 4 Hours"));
bp.Vars.StepReminderTimes.Add(new TimeValue(1 * (60 * 60 * 24),

     "Every Day"));
bp.Vars.StepReminderTimes.Add(new TimeValue(4 * (60 * 60 * 24),

     "Every 4 Days"));
bp.Vars.StepReminderTimes.Add(new TimeValue(7 * (60 * 60 * 24),

     "Every Week"));
}

Task Custom Variables
Custom variables in this section of the documentation can be used to customize a variety of settings asso-
ciated with user tasks.

AlwaysFindTaskForForms
When this flag is set to true, forms will attempt to associate with a task when opened. If this is left as the
default (false), forms will only associate with a task when opened from a task list Knowledge View.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.AlwaysFindTaskForForms = true;
}

Developer's Reference Guide | 289



BP Logix Inc
Process Director Documentation

fCancelSubWorkflows
If this system variable is set to false, cancelling a process or process task won't cancel their associated
sub-processes.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Cancellations of tasks or processes won't cancel sub-
    // processes

bp.Vars.fCancelSubWorkflows = false;
}

fEnableUndelegationRestart
When a user who is participating in a running task delegates to another user who is already running in the
same step/activity, the original user is canceled and the delegated user is left running. When undelegat-
ing, this system variable, when set to "true", will allow the original user's to be restarted if that step/activ-
ity is still running for the delegated user. More information about how this variable affects user
delegation is available in the User Delegation topic of the System Administrator's Guide.

This variable should be set in the PreSetSystemVars() function of the customization file.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Original user will be restarted when the delegation is removed
    // from a running task.

bp.Vars.fEnableUndelegationRestart = true;
}

fForceInviteEmail
This system variable, when set to "false", enables you to prevent the standard task assignment email noti-
fication from being sent to users who are invited to a task using the email invite feature. The default
value for this variable is "true".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Prevent assignment emails from being sent to invited task assignees

bp.Vars.fForceInviteEmail = false;
}

fPreventTaskCompleteIfCheckout
When set to true, this option prevents users from completing a task if they've checked out a document
while working on that task, and haven't yet checked it in.

290 | Developer's Reference Guide

User Delegation.htm


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Prevents user from completing a task
    // if he performed a check out on a
    // document and hasn't checked it in

bp.Vars.fPreventTaskCompleteIfCheckout = true;
}

fSendEmailOnWfAdmin
When set to true, This variable will force an email to be sent when a user is added to a running step/activ-
ity by an administrator. The default value is false.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Send an email on administrative user additions to a task
bp.Vars.fSendEmailOnWfAdmin = true;

}

fShowResultOnNotNeeded
This option, when set to "true" will display the task result in the routing slip when the task is completed by
an automated or external process. When a task’s “Completed When” condition is "When Any Result Condi-
tion is Met" and a non-user result condition is met, (such as a check box being checked), the result of that
automated or external process is shown in the routing slip. By default, this variable is set to "false".

When an activity is configured to complete when "All Users Complete or Result Condition Met", this vari-
able will show the activity status associated with each of the users that were not needed.

This variable should be set in the PreSetSystemVars() function of the customization file.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Users marked as "not Needed" will display in the Routing Slip
bp.Vars.fShowResultOnNotNeeded = true;

}

fStartUsersAddedToGroup
This option, when set to "true" will automatically add users to a running instance of a process task when
the users are added to the group assigned to the task. The default setting for this custom variable is
"false".

This variable should be set in the PreSetSystemVars() function of the customization file.

Developer's Reference Guide | 291



BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// New group users will automatically be added to running tasks
bp.Vars.fStartUsersAddedToGroup = true;

}

TaskAlreadyCompleteAlert
This variable enables you to configure the message displayed in the alert box that will display when the
user tries to open a task that has already been completed. Set to “” if you don't want the alert to display
at all.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.TaskAlreadyCompleteAlert = ""; //Alert won't display
}

TaskAlreadyCompleteMessage
This variable enables you to configure a text message displayed on the page that will be displayed when
the user tries to open a task that has already been completed. This only applies when the page to which
the user is directed resides in Process Director. Set to “” if you don't want the message to display at all.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.TaskAlreadyCompleteMessage = ""; //Message won't display
}

TaskAlreadyCompletePage
This variable enables you to configure which page is displayed when the user tries to open a task that is
already complete. You can set this variable to an HTML link of the page you wish displayed. By default,
the home page is displayed. You can set the variable to "null" will display the process instance page. You
can also specify that Process Director shows the Form associated with the task by setting the variable to
"form.aspx".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Displays process instance page
    // To display the Form associated with the task use:
    // bp.Vars.TaskAlreadyCompletePage = "form.aspx";

bp.Vars.TaskAlreadyCompletePage = null;
}

TaskAssignedReminderTimes

292 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This variable enables you to add an option to the reminder dropdown in a Timeline Activity that will
remind the user he has been assigned that activity a given number of seconds after it has been assigned
to him.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Add a new reminder time
bp.Vars.TaskAssignedReminderTimes.Add(new TimeValue(1 * (10 * 60),

     "Ten minutes after task is assigned.");
}

Task Due Reminder Times
Task Due reminder Times are times that reminders should be sent after a task's due date has passed. In
the example below, the reminder times add additional reminder options to the standard list, and once
added, will also appear in the dropdown control as selectable options.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(-1 * (24 * (60 * 60)),
     "Every 1 day after task is due"));

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(-2 * (24 * (60 * 60)),
     "Every 2 days after task is due"));

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(-3 * (24 * (60 * 60)),
     "Every 3 days after task is due"));

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(1 * (10 * 60),
     "Ten minutes after task is due.");

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(-1 * (10 * 60),
     "Every ten minutes after task is due.");
}

User Info SlideOut Custom Variables
The User Info Slideout is a control that appears when you click the upper left corner of the Process Dir-
ector screen. It contains a variety of information about the logged-in user, and can include the Name,
email address, image, and other items that can be customized by using the custom variables in this sec-
tion of the documentation.

Developer's Reference Guide | 293



BP Logix Inc
Process Director Documentation

fDisableUserProfileEmailChange
This variable, when set to "true" disables all end users' ability to change their email addresses via the User
Profile page. The default value for this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Prevent users from changing their email addresses
bp.Vars.fDisableUserProfileEmailChange = true;

}

fTurnOffUserProfileTimeZone
By default, users are allowed to control the time zone setting in their user profile. Setting this variable to
“true” disables this ability.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Prevent users from setting time zones
bp.Vars.fTurnOffUserProfileTimeZone= true;

}

UserInfoShowSignOut
Setting this system variable to true enables you to show the Sign Out button on the user info slide panel.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Hide the user info slideout
bp.Vars.UserInfoShowSignOut = false;

}

fTurnOffDelegation
This variable , when set to "true" will remove the ability for users to perform delegation from their User
Profile page. The default value for this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will disable user delegation in the user profile.
bp.Vars.fTurnOffDelegation = true;

}

fTurnOffSharedDelegation
This variable , when set to "true" will remove the ability for users to perform shared delegation from their
user profile page. The default value for this variable is "false".

294 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will disable shared delegation ability in the user profile.
bp.Vars.fTurnOffSharedDelegation = true;

}

fTurnOffUserProfileEmail
By default, users are allowed to disable their email from their user profile. Setting this variable to “true”
disables this ability.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Prevent users from disabling email
bp.Vars.fTurnOffUserProfileEmail= true;

}

UserInfoSlideOut
This system variable determines what information will be displayed in the user info slide panel.  The sys-
tem variable can contain HTML and system variables.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Format the user info slideout
bp.Vars.UserInfoSlideOut = “<span style=’font-weight:bold;’>
{Curr_User,format=name}</span><br/>{Curr_User,format=email}

     <br/><br/>{server_name}”;
}

UserInfoShowEditProfile
This system variable enables you to determine whether the “Edit Profile” button will display in the user
info slide panel. If this variable is set to true, the button will be displayed. Otherwise, it will not.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disable user edits
bp.Vars.UserInfoShowEditProfile = false;

}

User Interface Custom Variables
These Custom Variables control the appearance of the Process Director's user interface for end users.

AllowRichTextTemplate
When this flag is set to true, Process Director will attempt to transfer Rich Text content into PDF form
fields that are set to accept Rich Text content. There are limitations to this ability, which are explained in

Developer's Reference Guide | 295



BP Logix Inc
Process Director Documentation

the PDF Rich Text Field Support section of the PDF Custom Tasks topic.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.AllowRichTextTemplate = true;
}

AutoMultilineTextBoxResize
Enables automatic vertical resizing of Input controls to expand them as you type, when set to "true". Once
this variable is set to "true", you can enable the feature in a control by setting the control's Class property
to "BPExpanding". Controls without this Class property setting won't automatically expand.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable autosized text boxes
bp.Vars.AutoMultilineTextBoxResize = true;

    // Invoke the default class to enable it
bp.Vars.AutoMultilineTextBoxResizeClass = "BPExpanding";

}

AutoMultilineTextBoxResizeClass
By default, Process Director uses a CSS class named BPexpanding to implement auto-resizing for Input
controls. You can change the default class to a class of your own design, by setting the class name with
this custom variable.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable autosized text boxes
bp.Vars.AutoMultilineTextBoxResize = true;

// Use a custom class to enable it
bp.Vars.AutoMultilineTextBoxResizeClass = "myCustomCSSClass";

}

bpFormOpenSize
Enables you to set custom sizes / position for forms that are opened.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// All forms should open at position 10,10 with size 700,600
bp.Vars.bpFormOpenSize = "top=10,left=10,height=700,width=600";

}

bpPopupOpenSize
Enables you to set custom sizes / position for all popup windows such as user pickers.

296 | Developer's Reference Guide

PDF Custom Tasks.htm#RichTextSupport


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// All popups should open at position 10,10 with size 700,600
bp.Vars.bpPopupOpenSize = "top=10,left=10,height=700,width=600";

}

CustomHTMLHeadTags
This variable enables you to enter an HTML string to define custom Head tags for the HTML pages dis-
played in Process Director.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.CustomHTMLHeadTags = "<link href=\"http://sample.bplogix.com/custom
     /sample-bp-icon.jpg\"
     rel=\"apple-touch-icon\"><link rel=\"stylesheet\"
     type=\"text/css\" href=\"theme.css\">";
}

DisableInlineErrorsWithPopup
This variable, when set to "true", suppresses the inline form validation error messages on a Form when
using the option to display error messages in a popup. The default for this option is "False".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Suppress inline error messages when using Popup error messages

bp.Vars.DisableInlineErrorsWithPopup = true;
}

DisableParentRefreshForm
This variable enables you to disable the auto refreshing of the parent browser when forms are completed.

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.DisableParentRefreshForm = true;
}

EnableReactAdminPages
This variable was implemented in Process Director v5.44.600. When set to "false", it disables the
redesigned look of some IT Admin pages to display the classic view. The default value for this variable is
"true".

Developer's Reference Guide | 297



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Disable admin page UI updates.
bp.Vars.EnableReactAdminPages = false;

}

ErrorPage
This string variable enables you to set the URL of a custom error page to display when a Process Director
error occurs. The custom error page should be placed into the /custom folder at the website root to
ensure that they aren't overwritten during an upgrade of the product. An HTML and ASPX sample error
page are included in the /custom folder by default.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will set the URL of the custom error page.
bp.Vars.ErrorPage = "http://servername.com/custom/error.htm";

}

fEnableAccessibility
Available in Process Director v5.34 or higher, this Boolean variable, when set to "true," enables advanced
accessibility features for Process Director. The default value for this variable is "false".

Advanced accessibility features include:

1. Improved contrast
2. Improved hover and focus indicators
3. Increased font sizes
4. Addition of structural element (main)
5. Proper use of heading tags (h1, h2...)
6. Proper use of the alt attribute
7. Keyboard support for images that had only mouse support
8. Setting default language in html tag
9. Use HTML5 specification for document type
10. Make error message easier to locate by added aria-describedby attribute

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable automatic accesibility features
bp.Vars.fEnableAccessibility = true;

}

fIncludeBootstrap
This variable, when set to true, enables you to use the Bootstrap controls in the Online Form Designer's
Responsive Layout menu, and provides visual markers on the design surface for the Bootstrap controls.
The default setting for this variable is false.

298 | Developer's Reference Guide

Form Online Controls Responsive.htm
Form Online Controls Responsive.htm


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable Bootstrap in the Online Form Designer
bp.Vars.fIncludeBootstrap = true;

}

EnableFormThemes
This variable, when set to "false" enables the Dropdown control to properly display type-ahead func-
tionality. The default value is "true".

This variable was previously used to enable Telerik themes for forms, but this functionality has
been deprecated.

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Revert to unthemed operation, and enable
    // dropdown type-ahead.

bp.Vars.EnableFormThemes = false;
}

fDisableDetailedAttach
This variable enables you to control whether the show the detailed option for attaching documents to
forms.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Disable the detailed attach on upload

bp.Vars.fDisableDetailedAttach = true;
}

fDisableImageResize
When true, this option disables automatic image resizing and rotating. Images are, by default, resized and
rotated to display properly on mobile devices and when embedded in frames.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // disables automatic image resizing and rotating

bp.Vars.fDisableImageResize = true;
}

Occasionally, When using Process Director, you may encounter a generic GDI+ error when attempting to
display a PNG file.Setting fDisableImageResize to false will prevent the error from occurring.

sDisableNavigationScroll

Developer's Reference Guide | 299



BP Logix Inc
Process Director Documentation

This variable enables you to disable the system navigation scrolling for navigation buttons in a Work-
space's navigation bar. This variable is set to false by default.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will disable the scrolling of system navigation

bp.Vars.sDisableNavigationScroll = true;
}

fDocRemovedInPopup
This variable changes the system behavior when the user clicks on the download link on a document that
has had its binary data removed, but the document artifact remains in the system. The default behavior is
to replace the currently displayed Form with a custom error page in the same window.

When setting this variable to "true", the custom error page identified in the sCustomURL_DocRemoved
variable will open in a new window instead of replacing the current Form in the same window.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Cause the page that displayed the document error
    // message to occur in a popup, the default is false

bp.Vars.fDocRemovedInPopup = true; 
}

fEnableKViewFilterOnSavedForLater
By default, incomplete forms that have been saved for later display in Task List Knowledge Views, irre-
spective of filters that may be applied to the Knowledge View. This Boolean variable, when set to "true,"
enables Process Director to filter incomplete forms and hide them from the Task List results.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable Task List filtering for saved/incomplete forms
bp.Vars.fEnableKViewFilterOnSavedForLater = true;

}

fEnableMultiLanguage
By default, Label text values are static once set. For users of Process Director v5.44.500 and higher, this
Custom Variable will, when set to True, enable dynamic setting of Label text. This feature is primarily
intended to support accessibility for multilingual user interfaces where the Label text must change based
on the user's language.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable dynamic text for labels
bp.Vars.fEnableMultiLanguage = true;

}

fEnableThumbnails

300 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This Boolean variable enables thumbnails of attached files to be shown in ShowAttachment Controls.  The
default value of this flag is "true". When set to "false", Process Director will no longer show options on the
ShowAttach Form control to display the thumbnail for supported document types.

You can optionally set the height and width of the thumbnails by setting ThumbnailWidth and/or Thumb-
nailHeight to the desired dimensions in pixels.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enables thumbnails for attachments
    bp.Vars.fEnableThumbnails = true;

// Sets thumbnail width to display in pixels
bp.Vars.ThumbnailWidth = 75;

}

fIgnoreAccessibilityFlag
This system variable enables Process Director to ignore some settings for the Switch control, to improve
accessibility for that control. This variable overrides the default fEnableAccessibility setting for the con-
trol.

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Ignore accessibility setting to Display the Switch control
bp.Vars.fIgnoreAccessibilityFlag = true;

}

fLoginBgRand
This variable , when set to "true" will display a random background image on the login page. The default
value for this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Enable random background images for login page
bp.Vars.fLoginBgRand = true;

}

FormEditorConfig
Users of Process Director v5.0 and higher have the ability to use the Online Form Designer (OFD) to design
Forms. The toolbars that appear in the OFD can be customized by creating a JavaScript configuration file
that you can upload to the /custom folder of the Process Director installation. Documentation for the
CKEditor's Toolbar configuration can be found at the CKEditor Documentation web site.

This variable specifies the location of a custom JavaScript configuration file to use, in addition to the
default file, and primarily enables you to customize the fonts used by and displayed in the OFD. This vari-
able will universally effect the available controls for every form definition.

Developer's Reference Guide | 301

Form Online Controls Attachments.htm#ShowAttachedObjects
https://docs.ckeditor.com/ckeditor4/latest/api/CKEDITOR_config.html#cfg-toolbar


BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set a custom configuration file for the Form Editor
bp.Vars.FormEditorConfig = "/custom/cust_config.js";

}

Notice that you need to use full client path, without using a "~", in the URL to the Configuration file.

You must create a cust_config.js file in the Custom folder of your Process Director Installation.

For more information about how to perform customization of the OFD, please see the UI Customization
topic.

fShowDisabledUsers
When set to true,  Process Director will display disabled users in all dialogs and user pickers. This variable
is set to false by default.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Display disabled users
bp.Vars.fShowDisabledUsers = true;

}

fShowPredictedDates
This boolean variable sets whether to hide the predicted start/end dates from the routing slip. The
default value is false.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Hide predicted dates on the Routing Slip
bp.Vars.fShowPredictedDates = false;

}

fShowProcessCancelReasonOnUser
When a process or activity/step is canceled, and that results in a user being canceled, the administrative
comment will be added to the user record in the Routing Slip indicating why it was canceled if this vari-
able is set to "true". The default value for this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Show cancellation reason on Routing Slip
bp.Vars.fShowProcessCancelReasonOnUser = true;

}

InlineDocumentTypes

302 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This variable enables you to control document types are displayed “inline” in the browser. You can
inspect or modify this list.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Add the ZIP file type as one to display “inline”

bp.Vars.InlineDocumentTypes.Add("ZIP");
}

LeaveCaseButtonText
This variable enables you to change the default text used in the User Info Box to close a case folder. By
setting the variable, you can change the default "Leave Case" text to custom text of your choice.
Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Change text of the Leave Case button

bp.Vars.LeaveCaseButtonText= "Leave Case text";
}

LoginMessage
This variable enables you to set a string on the login page. This string can contain HTML syntax.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set HTML message on login page
bp.Vars.LoginMessage = "Welcome to Process Director.

     <a href='http://bplogix.com/' "+
"target='_blank'>Click Here</a>for the BP Logix web site.";

}

nFormOpenProps
This variable enables you to set an option to open a form in normal, maximized or full screen mode.
Values

VALUE NAME DESCRIPTION DEFAULT
FormOpenProps.Normal Comes up as a popup window

smaller than the screen size
FormOpenProps.Maximized Comes up as a popup sized to

the full screen
Default

FormOpenProps.UseFullScreen Uses the browser full screen
parameter to maximize the
popup window

Developer's Reference Guide | 303



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Sets Forms to open in a normal window

bp.Vars.nFormOpenProps = FormOpenProps.Normal;
}

nHomeTopHeight
This variable enables you to set the height of the navigation bar on the home page in pixels. This may be
needed if you customize the logo.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set top home bar height to 60 pixels
bp.Vars.nHomeTopHeight = 60;

}

nHomeTopWidth
This variable enables you to set the width of the custom logo on the home page in pixels.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

// Set custom logo width to 200 pixels
bp.Vars.nHomeTopWidth = 200;

}

nPDFPageWidth
This variable enables you to control the width in pixels of forms converted into PDF. 0 sets the width auto-
matically.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // 1024 pixel width for converted PDFs

bp.Vars.nPDFPageWidth = 1024;
}

nTaskCompleteDialogWidth
This variable sets the width of the "Completing Task" popup that appears when a task is completed from
the Task List. In most cases, this setting will never need to be adjusted.

304 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

// The width of the popup that says "completing task".
bp.Vars.nTaskCompleteDialogWidth = 20;

}

nTaskCompleteDialogHeight
This variable sets the height of the "Completing Task" popup that appears when a task is completed from
the Task List. In most cases, this setting will never need to be adjusted.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

// The height of the popup that says "completing task".
bp.Vars.nTaskCompleteDialogHeight = 20;

}

nTaskCompletePromptDialogWidth
This variable sets the width of the dialog box that prompts the user to enter task completion comments
when a task is completed from the Task List. In most cases, this setting will never need to be adjusted.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

// The width of the popup that PROMPTS the user to enter completion comments.
bp.Vars.nTaskCompletePropmtDialogWidth= 500;

}

nTaskCompletePromptDialogHeight
This variable sets the height of the dialog box that prompts the user to enter task completion comments
when a task is completed from the Task List. In most cases, this setting will never need to be adjusted.
Example

public override void SetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

// The width of the popup that PROMPTS the user to enter completion comments.
bp.Vars.nTaskCompletePromptDialogHeight= 250;

}

NTLM_NoLoginButton
This variable enables you to remove the NTLM login button on the home page.

Developer's Reference Guide | 305



BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars (BPLogix.WorkflowDirector.SDK.bp bp)
{

//Removes the Windows login button
bp.Vars.NTLM_NoLoginButton = true;

}

ResponsiveType
This variable enables improved responsive browser support for Forms. Enabling responsive form support
activates a number of features to make Forms display better on small screens, including the ArrayColumn
Form control tag that reformats array tables so that each column displays on a new row in small view-
ports, eliminating the need for horizontal scrolling.

The following options are available:

l ResponsiveTypes.None: Disables responsive support.
l ResponsiveTypes.Mobile: Enables responsive support only on mobile devices.
l ResponsiveTypes.MobileSmall: Enables responsive support only on small mobile devices, e.g.,
smartphones, but not iPads.

l ResponsiveTypes.All: Enables responsive support on all devices.

The default parameter for this variable is ResponsiveTypes.All for Process Director v5.34 and higher.
For prior versions of the product, the default value is ResponsiveTypes.None.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

    // This will enable responsive formatting only on mobile devices
bp.Vars.ResponsiveType = ResponsiveTypes.Mobile;

// This will enable responsive formatting on all devices.
    // It uses current window size to make decisions on formatting.

bp.Vars.ResponsiveType = ResponsiveTypes.All;

// This disables responsive support
bp.Vars.ResponsiveType = ResponsiveTypes.None;

}

sCkEditorCustomConfig
Users of Process Director v5.0 and higher have the ability to use the Text Editor on Input controls, in addi-
tion to the Rich Text editor that is available in previous versions of the product. The Text Editor is a third-
party control called CKEditor. The toolbars that appear in the Text Editor can be customized by creating a
JavaScript configuration file that you can upload to the /custom folder of the Process Director install-
ation. Documentation for the CKEditor's Toolbar configuration can be found at the CKEditor Docu-
mentation web site.

This system variable enables you to specify the location of the configuration file you wish to use to cus-
tomize the Text Editor's toolbars.

306 | Developer's Reference Guide

Form Control Tags.htm#ArrayColumn
Form Control Tags.htm#ArrayColumn
https://docs.ckeditor.com/ckeditor4/latest/api/CKEDITOR_config.html#cfg-toolbar
https://docs.ckeditor.com/ckeditor4/latest/api/CKEDITOR_config.html#cfg-toolbar


BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Specifies the location of the CKEditor config file

bp.Vars.sCkEditorCustomConfig = "/custom/js/myCKEditorConfig.js";
}

For more information about this customization, please see the UI Customization topic.

sCustomURL_DocRemoved
This string variable enables you to provide a custom URL to which the user should be redirected when try-
ing to navigate to a document that has been removed from a process.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will send the user to a custom error URL when trying to
    // open a document that has been removed from the system.

bp.Vars.sCustomURL_DocRemoved = "http://servername/customUrl.htm";
}

sLoadingImage
This variable enables you customize the loading image that is displayed when the system is waiting on a
Form event. The preferred file format for the image should be an animated GIF image.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Custom loading image
bp.Vars.sLoadingImage = "http://myserver/image.gif";

}

sLogoLink
This variable enables you customize the destination address if the logo is clicked.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Customize logo click URL
bp.Vars.sLogoLink = "http://myserver/my_intranet";

}

sLogoURL
This variable enables you customize the top left logo displayed on the home page. Use a standard URL.

Developer's Reference Guide | 307



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
   // Customize logo image

bp.Vars.sLogoURL = "http://myserver/mylogo.gif";
}

SplitterWidth
This variable sets the width, in pixels, of the splitter bars that appear between portlets in a workspace.
You can use this variable to set a custom width for the splitter bars.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Sets the width of portlet splitter bars

bp.Vars.SplitterWidth = "10px";
}

ShowDocHistoryWhenDisabled
This variable, when set to "true", enables the history tab for document attachments to display, even if the
ShowAttach control is disabled. The default for this option is "False".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Shows the history for attachments when the ShowAttach control
    // is disabled.

bp.Vars.ShowDocHistoryWhenDisabled = true;
}

sStyleEnabled
This variable enables you to set the system default style for enabled form fields.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the default style for Enabled form fields to a
    // white background

bp.Vars.sStyleEnabled = "background-color:White;";
}

sStyleDisabled
This variable enables you to set the system default style for disabled form fields.

308 | Developer's Reference Guide

Form Online Controls Attachments.htm#ShowAttachedObjects


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the default style for disabled form fields to a
    // gray background

bp.Vars.sStyleDisabled = "background-color:#CCCCCC;";
}

sStyleError
This variable enables you to set the system default style for form fields in an error state.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// This will set the default style for form fields in an error
    // state to a red background

bp.Vars.sStyleError = "background-color:Red;";
}

sStyleRequired
This variable enables you to set the system default style for required form fields.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the default required style for form fields to a
    // yellow background

bp.Vars.sStyleRequired = "background-color:#FFFF99;";
}

sUseCSS
This variable enables you to specify a CSS file containing definitions for CSS classes. Forms will be stylized
according to the code in the specified CSS files.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Adds two custom CSS Files

bp.Vars.sUseCSS.Add("~/custom/myStyles.css");
bp.Vars.sUseCSS.Add("~/custom/myStyles1.css");

}

For more information about system customization, please see the UI Customization topic.

UseWorkspaceHome
When set to true, this system variable will use the Desktop Workspace layout for the user’s home page.

The use of this variable was deprecated in Process Director v4.5.

Developer's Reference Guide | 309



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Deprecated
bp.Vars.UseWorkspaceHome = true;

}

Workflow Step Colors
Process Director enables the colors for Process Timeline Activities and Activity Result buttons to be cus-
tomized in the dropdown list of colors. You can add colors to the existing list of colors, or you can create
an entirely new list of your own devising.

To create your own list, start by adding the following lines of code to the PreSetSystemVars method in
the Custom Vars file:
bp.Vars.WorkflowColors = new List<ColorValue> ();
bp.Vars.WorkflowColors.Add(new ColorValue("Default", "", ""));

This will create an entirely new list with a default color value, which will be the standard default color in
the interface, e.g., buttons will be the standard gray color. You can then add additional colors to your list
using the color addition code described below.

If you merely want to add colors to the existing default color list, don't include these lines.

To add a new colors to the existing list, or to the new list you created above, add the following line for
each desired color:
bp.Vars.WorkflowColors.Add(new ColorValue("Label", "BackColor", "ForeColor"));

The following Parameters are required for this line of code:

Label: The label that will appear for the color in the dropdown.

BackColor: The HTML hexadecimal, HTML named color, or RGB background color of the dropdown item.

ForeColor: The HTML hexadecimal, HTML named color, or RGB foreground color of the dropdown item.

So, using the following line of code:
bp.Vars.WorkflowColors.Add(new ColorValue("Cornflower", "#739CCB", "#FFFFFF"));

...will result in the following addition to the bottom of the color dropdown:

310 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Activity colors
    // If you add the line, it will create a new color list
    // to replace the default list

bp.Vars.WorkflowColors = new List<ColorValue>();

// Create a new default color entry for the new list.
bp.Vars.WorkflowColors.Add(new ColorValue("Default", "", ""));
// If you do NOT add these lines, the colors below will

    // simply be added to the default color list.

//Add colors to the list
bp.Vars.WorkflowColors.Add(new ColorValue("Lt Black", "#333366", "#FFFFFF"));
bp.Vars.WorkflowColors.Add(new ColorValue("Lt Lavender", "#FFCCFF",

"#666666"));
bp.Vars.WorkflowColors.Add(new ColorValue("Yellow", "#FFFF00", "#666666"));
bp.Vars.WorkflowColors.Add(new ColorValue("Dk Gray", "#FFFF99", "#666666"));

}

This variable will also accept RGB color values, e.g., "rgb(255,0,0,)", in addition to HTML color
values.

Developer's Reference Guide | 311



BP Logix Inc
Process Director Documentation

UI Customization
Process Director's user interface can be customized in many ways. In this topic we'll discuss the basic pro-
cess for customizing elements of the Process Director interface.

One of the most common customization methods is to use a custom stylesheet to change the display of
various UI elements.

Process Director has an very extensive style sheet, named bpw.css, and, depending what version of Pro-
cess Director you're running, a different version of this file will be used to style your installation. You
should never edit this stylesheet, because you might seriously compromise the look and feel of the Pro-
cess Director installation. Moreover, this stylesheet will be overwritten every time you upgrade or reinstall
Process Director, so none of the changes you make would be persistent.

Instead, you can create a custom stylesheet that overrides the styles that are defined in bpw.css. This
stylesheet can be placed somewhere in the /custom folder to make any changes persistent, since, again,
this folder isn't overwritten during upgrade or reinstall. Moreover, the custom stylesheet will be much
smaller, since you're only trying to modify a few specific built-in Process Director styles, in most cases,
which makes creating it much simpler.

Creating this custom stylesheet will require some familiarity the bpw.css file, so you might find it useful to
download it from your installation. This can be done relatively simply by using the Developer Tools built
into your web browser. You can press the [F12] key to open the Developer Tools, which will give you
access to all of the source files for a Process Director page, from which you can download bpw.css.

For all of the examples presented in this topic, we'll use a custom CSS stylesheet named custom.css, and
we'll place it in the /custom/ui folder, so that all of our UI customization files will be organizaed in a
single subfolder of the /custom folder.
Adding a Custom CSS Stylesheet to Process Director #
There are two methods for adding a custom CSS stylesheet to Process Director.
Installation Settings
On the Properties page of the Installation Settings section if the IT Admin area, the CSS property will
accept the file path of a custom CSS file.

312 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Alternatively, you can edit the Custom Variables file to add the sUseCSS Custom Variable

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Use a Custom CSS stylesheet
    bp.Vars.sUseCSS.Add("~/custom/ui/custom.css"); // We need the "~" here
}

Note the use of the tilde (~) character at the beginning of the file location for both the Prop-
erties page and the sUseCSS Custom Variable. This is a required shorthand character to prompt the
server add in the first part of the fully qualified URL of the file location in Process Director.

Customizing CKEditor #
For Process Director v5.00 and higher, a third-party tool, CKEditor, is used to provide the form design and
text formatting tools used in the Online Form Designer (OFD) and in Input controls that are configured
with the Use Text Editor property selected when placed on a Form.

Developer's Reference Guide | 313



BP Logix Inc
Process Director Documentation

By default, the appearance of the CKEditor component is controlled by configuration files that are
installed with Process Director. This default configuration can be overridden by the use of custom con-
figuration files that you can add to your Process Director Installation. Both the OFD and the Input control
use different configuration files, and each of these files can be overridden via the use of System Variables
that can be placed in the PreSetSystemVars portion of the custom vars file, which is located at /cus-
tom/vars.cs.ascx. The /custom folder of a Process Director installation not overwritten on upgrades,
so any customization changes made to the system always need to be stored in this folder, to ensure the
customization is persistent across versions.

The FormEditorConfig Custom Variable enables you to customize the OFD, while the sCkEd-
itorCustomConfig Custom Variable enables you to customize the Input control's Text Editor.

If you make a mistake in the JavaScript configuration file for CKEditor, you can always remove
the FormEditorConfig or sCkEditorCustomConfig setting from your Custom Variables file and return
to the default Process Director settings. None of the settings you configure in a custom CKEditor
configuration file are permanent, and can always be rolled back to the Process Director default.

In both cases, a JavaScript configuration file needs to be specified for each Custom Variable. Some know-
ledge of basic JavaScript syntax is required to use the configuration file correctly. Happily, the syntax
used in the configuration files is very standardized, so it doesn't require too much effort to understand it.

We'll also be providing extensive examples here, so you can largely copy and paste the examples right
from this documentation topic. Also, full documentation for the CKEditor's Toolbar configuration can be
found at the CKEditor Documentation web site.

If you wished to customize both the OFD and the display of the Input control's Text Editor, you'd need to
add the following lines of code to PresetSystemVars:

public override void PreSetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Change the config of the Input control's text editor
    bp.Vars.sCkEditorCustomConfig = "/custom/ui/cust_txt_config.js";

// Change the config of the Online Form Designer
    bp.Vars.FormEditorConfig = "/custom/ui/cust_ofd_config.js";
}

You need to use the full client path, without using a "~", in the URL to the Configuration file.

Note that, in the examples above, both of the customization files reside in the /custom/ui folder. Creat-
ing them in a subfolder helps to keep the system organized by placing all of your UI customization files in
the same folder. You could, of course, place them in the /custom folder directly, but BP Logix recom-
mends that you organize subfolders for your customizations, to keep the /custom folder from getting too
cluttered. Note also that, in this example, the names of the JavaScript files specifically identify whether
the configuration refers to the Text Editor or the OFD.

Process Director has an existing configuration file for the CKEditor built into the product. You won't ever
edit that configuration file. Using a custom configuration file will simply override your installation's

314 | Developer's Reference Guide

https://docs.ckeditor.com/ckeditor4/latest/api/CKEDITOR_config.html#cfg-toolbar


BP Logix Inc
Process Director Documentation

default configuration with your custom configuration from the customization file, but will never alter any
of the built-in default settings that BP Logix has configured for the CKEditor in the Online Form Designer.

All of the customization files for CKEditor must have the CKEDITOR.editorConfig function. It's the only
function you'll place in the file, and all customization commands must be placed insideit, as shown in the
example below.

CKEDITOR.editorConfig = function (config) {
// All customization commands go here.

}

Customizing the Online Form Designer #

To see the changes you make to the configuration, you'll need to delete your browser cache
and reload the Process Director web page every time you upload changed versions of vars.cs.ascx or
any of the customization files discussed in this topic.

In most cases where you might want to edit the tools that are displayed in the OFD, you'll only want to
remove certain tools that are of minimal use, or which you don't want Form designers to access. The con-
fig.removeButtons command enables you to list the buttons you want to remove from the OFD editor.

For instance, if you wanted to remove the iFrame, Smiley Face, and View Source buttons from the OFD
toolbars, your custom configuration file would contain only the JavaScript below:

CKEDITOR.editorConfig = function (config) {
config.removeButtons = 'iFrame,Smiley,Source';

}

This configuration file would simply override the default configuration file to remove the specified but-
tons. All the other default configuration settings would be applied, since your custom configuration file
only overrides the settings of those three buttons. This is a much simpler solution for removing buttons
than trying to replicate the entire configuration.

Full Customization
The default configuration for the OFD looks something like the example below. The config.toolbar
command enables you to build the toolbars and tools you'd like to use in the OFD.

CKEDITOR.editorConfig = function (config) {
// Define changes to default configuration here.
// For complete reference see:
// http://docs.ckeditor.com/#!/api/CKEDITOR.config
// Toolbar default configuration as set in /Editor/bp_config.js
// These are all the tools that are available in the default setup of the OFD

config.toolbar = [
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// DO NOT EDIT THIS SECTION!

        // These are BP Logix Custom Tools.
{ name: 'document', items: ['BPSave', 'BPSaveOnly', 'BPSaveRun',

            'BPSaveTest', 'Bp-discard'] },
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Below are the built tools available via CKEditor that can be edited

Developer's Reference Guide | 315



BP Logix Inc
Process Director Documentation

safely
{ name: 'clipboard', items: ['Cut', 'Copy', 'Paste', 'PasteText',

            'PasteFromWord', '-', 'Undo', 'Redo'] },
{ name: 'editing', items: ['Find', 'Replace', '-', 'SelectAll', '-'] },
{ name: 'tools', items: ['ShowBlocks'] },
{ name: 'links', items: ['Link', 'Unlink', 'Anchor'] },
{ name: 'insert', items: ['Image', 'Table', 'SpecialChar', 'Iframe', 'Smi-

ley'] },
{ name: 'document', items: ['Source'] },

        '/',
{ name: 'basicstyles', items: ['Bold', 'Italic', 'Underline', 'Strike',

'Subscript', 'Superscript', '-', 'CopyFormatting', 'RemoveFormat'] },
{ name: 'styles', items: ['Format', 'Font', 'FontSize'] },
{ name: 'paragraph', items: ['NumberedList', 'BulletedList', '-', 'Out-

dent',
            'Indent', '-', 'Blockquote', 'CreateDiv', '-', 'JustifyLeft', 'Jus-
tifyCenter',
            'JustifyRight', 'JustifyBlock', '-', 'BidiLtr', 'BidiRtl',] },

{ name: 'colors', items: ['TextColor', 'BGColor'] },
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// DO NOT EDIT THIS SECTION!

        '/',
        '/',

// These are the common BP Logix control Tools.
{ name: 'common', items: [

            'bp-input-btn', 'bp-checkbox-btn', 'bp-datepicker-btn', 'bp-dropdown-
btn',
            'bp-radio-btn', 'bp-section-btn', 'bp-switch-btn'
            ]
        },

{
    // These are the remaining BP Logix control tools

// The items below are hidden in bpw.css, which can't be edited.
            name: 'bplogix', items: [             
                'Bp-attach', 'Bp-input', 'Bp-checkbox', 'Bp-datepicker',
                'Bp-dropdown', 'Bp-radio', 'Bp-section',
                'Bp-routingslip', 'Bp-signaturecomments', 'Bp-signaturecontrol',
                'Bp-signaturetopaz', 'Bp-commentlog', 'Bp-tabstrip',
                'Bp-tabstripend','Bp-tabcontent', 'Bp-tabcontentend',
                'Bp-sectionembedded', 'Bp-sectionembeddedend', 'Bp-arraystart',
                'Bp-arrayend', 'Bp-removerowinarray', 'Bp-arraymoveup',
                'Bp-arraymovedown', 'Bp-removerow', 'Bp-addrow', 'Bp-sort', 'Bp-
sum',
                'Bp-button', 'Bp-buttonarea', 'Bp-printbutton', 'Bp-savebutton',
                'Bp-cancelprocessbutton', 'Bp-showattach', 'Bp-userpicker',
                'Bp-grouppicker', 'Bp-contentpicker', 'Bp-controlpicker', 'Bp-
listbox',

'Bp-slider', 'Bp-rating','Bp-lockform', 'Bp-calculation',
                'Bp-datedifference', 'Bp-invite', 'Bp-scheduler', 'Bp-html',
                'Bp-datasourcepicker', 'Bp-categorypicker', 'Bp-attributepicker',
                'Bp-radiobuttonlist', 'Bp-formerrorstrings', 'Bp-form-
infostrings',
                'Bp-kview', 'Bp-report', 'Bp-label', 'Bp-hotlink', 'Bp-audit',
                'Bp-image', 'Bp-manageusers', 'Bp-emaildata', 'Bp-icon',
                'Bp-emailcompletelink', 'Bp-comment', 'Bp-commentend', 'Bp-
switch',
                'Bp-controlpicker', 'Bp-attachkview', 'Bp-showattachkview',
                'Bp-arrayrownumber', 'Bp-sysvarform', 'Bp-sys-
vartaskinstructions',
                'Bp-sysvarcurrentdate', 'Bp-sysvarcurrentuser', 'Bp-sys-
varstring',
                'Bp-sysvarcontrol', 'Bp-reauth', 'Bp-tooltip', 'Bp-activitylog',
                'Bp-captcha'
            ]

316 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

        },
        // These are the BP Logix control tool dropdown menus

{ name: 'bptoolbars', items: ['BPINPUT', 'BPOTHERINPUT', 'BPACTIONS',
            'BPOTHER', 'BPLAYOUT', 'BPRESPONSIVELAYOUT', 'BPARRAYS',
'BPATTACHMENTS',] },

//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    ]; 

In the CKEditor JavaScript, vertical divider lines between tools on the same toolbar are cre-
ated with'-', while creating a new toolbar line is denoted with'/'. These conventions enable you
to more easily organize the toolbars, and distinguish between different types of tool on each tool-
bar.

Were you to place this configuration file in your installation as /custom/ui/cust_ofd_config.js and
reference it via the FormEditorConfig Custom Variable, it would simply replicate the existing default
configuration of the OFD toolbars. You wouldn't see a change, since this configuration is exactly the same
as the Process Director default.

Using this configuration file, however, you could change the order in which toolbars and buttons appear,
or remove them completely from displaying in your installation.

You should ONLY edit the CKEditor tools (Basically, just the tools highlighted with the bright blue
code options in the sample above), and not the Process Director control tools, since that would dis-
able them in your installation. BP Logix recommends that you don't edit any of the sections that
are marked off by exclamation points at the start and end of the section. Technically, you could
edit these sections to alter the order in which tools or menus appear in the user interface of the
Online Form Designer, but we strongly discourage it.

Customizing the Input Control Text Editor #
The default configuration for the Input control's Text Editor would look like this:

CKEDITOR.editorConfig = function (config) {
config.toolbar = [

{ name: 'document', items: ['Source', '-'] },
{ name: 'insert', items: ['Table', '-'] },
{ name: 'paragraph', items: ['NumberedList', 'BulletedList', '-', 'Jus-

tifyLeft',
'JustifyCenter', 'JustifyRight', 'JustifyBlock'] },

        '/',
{ name: 'basicstyles', items: ['Bold', 'Italic', 'Underline', '-'] },
{ name: 'colors', items: ['TextColor', 'BGColor', '-'] },
{ name: 'styles', items: ['Format', 'Font', 'FontSize'] },

    ]
}

Again, the config.toolbar command specifies the available tools in the Text Editor, and were you to
place this file in your installation and reference it via the sCkEditorCustomConfig Custom Variable,
you'd see no change in the UI.

Developer's Reference Guide | 317



BP Logix Inc
Process Director Documentation

You could modify this file to add or remove tools or toolbars, just as you do the OFD's configuration file.
And, once again, you could simply use the Config.removeButtons command to remove unwanted but-
tons, Of course, since this is already a fairly minimal set of editing tools, your most likely use case will be
to add tools to the existing ones, not remove the few that are there. To add new tools, you'll need to
modify the configuration file to add the desired tools in the desired locations.

Adding Custom Fonts #
While the default fonts provided with CKEditor are probably adequate for must purposes, your organ-
ization may wish to add custom fonts, for various reasons, such as using a specific corporate font, or bar-
code fonts for barcode readers. In this section, we'll refer to CKEditor generically, but the techniques we'll
discuss apply equally to the Online Form Designer or Input control Text Editor.

Just as with customizing the toolbars for CKEditor, you'll need to add some new lines to the JavaScript
configuration file. We'll also need to use the sUseCSS Custom Variable in the custom variables file.

This font functionality is completely separate from the toolbar configuration. You can customize just the
fonts, customize both fonts and toolbars, or, of course, do neither.

Adding the Fonts
Our first step is to supply the font (or fonts, in this case) we'll want to use for customization. Let's say that
we want to add a font named Nunito Sans and a barcode font named LibreBarcode39 to Process Director.
The first thing we need to do is upload the TrueType font files for those fonts into the /custom/ui folder
we've already been using. In this example, we'll upload NunitoSans-Regular.ttf and LibreBarcode39Text-
Regular.ttf into the folder. These fonts will need to be accessible on the server so they can be shown to
users that don't have them installed on their system.

We'll need to upload a custom CSS file (named "custom.css" in this example) into the /custom/ui folder.
This CSS file will have the contents shown below:

@font-face {
    font-family: "Nunito Sans";
    src: url(/custom/ui/NunitoSans-Regular.ttf);
}

@font-face {
    font-family: "Barcode";
    src: url(/custom/ui/LibreBarcode39Text-Regular.ttf);
}

.cke_editable {
    font: normal .9em "Nunito Sans";
}

.bpFormBody {
    font: normal .9em "Nunito Sans"!important;
}

.bpFormBody .gbleft {
    font-size: 17px;
}

This simple CSS does four things:

318 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

1. The two lines that start with the @font-face directive identify the two fonts we're adding and their
location, so that users who do not have them installed can download them directly into their
browser cache automatically, and see them on the screen.

2. The .cke_editable class is the default text display class for CKEditor. This CSS will override the
default text style and replace it with Nunito Sans as the new default font to use in CKEditor.

3. The .bpFormBody class is a built-in display class that sets the default font for Form text when
viewed in running Forms. By default, this font is set to Arial, and we're going to override it with
Nunito Sans. Because we're overriding the BP Logix style sheet, we need to add the !Important dir-
ective to make this work. If we don't add this class, all of our default text styling will show up as
Nunito Sans in CKEditor, but end users will see Arial as the default font when they view the Forms.
(Technically, we could skip this CSS class, but then, every time we created a Form, we'd have to spe-
cifically style all our text using the Font tool in CKEditor. Changing the default font is just...lots
easier.)

4. Finally, the .bpFormBody .gbleft class will ensure that Form buttons, such as the Button Area
control that displays the Submit, Cancel, activity result buttons, etc., will display the button icons
properly. We're changing the default font on Forms, which will affect how Form buttons display,
since Nunito Sans has a different line height than the default Arial font. Setting the font size to
17px tweaks the spacing just enough to make button icons appear vertically centered in Form but-
tons.
Our problem is that we can't just edit the .gbleft class by itself. It's a universal class that affects
all buttons in Process Director. That includes buttons that appear in the UI itself. We don't want to
throw off the placement of button icons or images used in the main product UI.
All we want to do is ensure that buttons display icons properly on Forms. So, we need to use the
syntax .bpFormBody .gbleft, with a space between the two classes. In CSS, this tells the browser
that we only want to make this change to the .gbleft class if it's displayed inside an element
that's styled with the .bpFormBody class. Since only the <body> element of a running Form
instance uses the .bpFormBody class, and Form buttons are always displayed inside the <body> ele-
ment, this style will only affect Form buttons on Running Forms. All of the other buttons used else-
where in the product won't be affected.
Also, we don't need to use the !important directive, since this syntax essentially creates a unique
class that automatically overwrites the default .gbleft class on running Forms, due to it's position
in the CSS hierarchy.

Process Director's CSS styling is very complex. You should be aware that creating custom
styles will be time-consuming, and will require considerable knowledge of CSS to pull off correctly,
without adversely affecting the UI of the product itself.

Editing the Configuration file
Next we'll need to edit our custom configuration file(s) for CK editor. We need to add two lines of con-
figuration:

Developer's Reference Guide | 319



BP Logix Inc
Process Director Documentation

CKEDITOR.editorConfig = function (config) {
// New fonts to add to the system
config.contentsCss = "/custom/ui/custom.css";
config.font_names = 'Nunito Sans;Barcode;' + config.font_names;

// All the toolbar config stuff we added previously,
// Which is completely separate from the font stuff.
config.toolbar = [

        ... // Code for Toolbar configuration
    ]
}

The config.contentsCss command let's CKEditor know that we want to apply some custom CSS to
CKEditor, and specifies the relative URL of our custom CSS file.

The config.font_names command adds our two new fonts to the list of fonts that are already shown in
CKEditor's Font tool. This particular syntax will add our fonts to the top of the CKEditor Font tool's list of
existing fonts, with all of the standard fonts appearing below them in the Font tool.

Our final step is to add our custom CSS file to our existing installation's configuration, as described in the
Adding a Custom CSS Stylesheet section, above.

If you want the new fonts used as the default font for both the OFD and the Input control,
you'll need to add these lines to both configuration files.

Once you've completed these steps, the two new fonts will be available for use in CKEditor, and will dis-
play properly in Process Director for end users.

Here's how it looks in the OFD:

And here's how it looks in a running Form that uses the Input control's Text Editor:

320 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Environment Message Customization #
The Server Control page of the IT Admin area's Troubleshooting section enables you to display an envir-
onmental message, e.g., "Staging Server" at the top of every page displayed to user, in order to let them
know what environment they're using. This message can be styled in a custom CSS stylesheet, by setting
the desired properties for the .bpCustomInfoText style. The most common customization would be to
change the background color of the message, using the style syntax:

.bpCustomInfoText {
    background-color: #FFE600;
}

For this style to appear to users, you must add a custom CSS stylesheet to Process Director, as described
above, if you do not already have one configured.

User Custom Variables
These Custom Variables enable you to specify various user-related settings in Process Director.

DefaultNewUsersToDayPass
This Custom Variable, when set to "true", will automatically create all new users as Day Pass users. The
default value of this variable is "false". This variable is relevant only if you have the Day Passes license
component.

Developer's Reference Guide | 321

Server Control.htm


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Make all new users day pass users.
bp.Vars.DefaultNewUsersToDayPass = true;

}

DelegationAdminGroups
If a user is in any of the groups specified by this variable, the user will be able to access the delegation
administration page, even without the “User Admin” setting enabled in his user profile.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.DelegationAdminGroups = "Delegation Users";
}

fAllowLoginRememberMe
This variable enables you to control whether built-in users can ask Process Director to remember their ses-
sion so they don’t have to log in each time they visit Process Director.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Allow users to use 'Remember Me' option
bp.Vars.fAllowLoginRememberMe = true;

}

fAllowRetrievePassword
This variable enables you to control whether built-in users can retrieve their passwords if they are for-
gotten. If set to true, a prompt will appear on the login page. Development systems that use the TestUser-
EmailAddress won't send password reset request email to the TestUserEmailAddress, but will, instead,
send them to the requesting user.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Allow users to retrieve passwords
bp.Vars.fAllowRetrievePassword = true;

}

fDisableImplicitPartitionGroupUsers
Users in groups are automatically added to a partition when the group is added to the partition. They are
implicitly added through their group membership. This option, when set to "true" will prevent this implicit
user addition, which means that users will have to be explicitly added to a partition to be part of it.

322 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    //Disables adding users to a partition implicitly.

bp.Vars.fDisableImplicitPartitionGroupUsers= true;
}

fDisableUserRenameOnDisable
This variable will, when set to "true", prevent a disabled user from being renamed and preventing a new
GUID from being applied during an update/synchronization. The default value for this variable is "false".
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // Prevent disabled users from being renamed

bp.Vars.fDisableUserRenameOnDisable = true;
}

fSharedDelegationNextTask
Setting this variable to true will, when shared delegation is enabled, display the next task to the delegate
automatically, if the principal assignee of the current task is also the principal assignee of the next task.
This variable is set to false by default.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Automatically display the next task to the delegate
bp.Vars.fSharedDelegationNextTask = true;

}

fTurnOnDelegationGroups
By default, users are allowed to delegate tasks to any other user. Setting this variable to “true” restricts
the user's ability to set delegations, and limits delegations only to other users who belong to the same
group as the delegating user.
Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{

// Restrict delegation to the same group as delegator
bp.Vars.fTurnOnDelegationGroups = true;

}

nUserInactivityTimeoutSecs
This variable enables you to set the maximum number of seconds to elapse prior to automatically logging
out a user for inactivity. Once the configured time limit expires, the user will be logged off, and will be
forced to re-authenticate to access the system again.

Developer's Reference Guide | 323

User Delegation.htm#SharedDelegation


BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLogix.WorkflowDirector.SDK.bp bp)
{
    // This will set the maximum inactivity time to 2 hours.

bp.Vars.nUserInactivityTimeoutSecs = 60*60*2;
}

324 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Using Web Services

This section provides a reference for calling or extending Web Services in Process Director. Docu-
mentation for each web service is located in the Available Web Services topic.

You'll need to enable the Web Services in BP Logix using the Properties page of the IT Admin area's Install-
ation Settings section. Ensure that Web Service Enabled is set to "True". You can optionally require all
Web Service calls to authenticate by setting Require Web Service Authentication to "True". When this is
set, you'll need to call the Authenticate Web Service call prior to any other calls. You can optionally set
the Web Service Restrictions property to a list of comma separated IP addresses that can call Web Ser-
vices. If this field is set, only requests from these IP Addresses will be allowed.

Web service calls can also be made via SQL Server database triggers. The following query in SQL is an
example of how to create a trigger that will make a web service call in Process Director.

USE [DatabaseName]
    GO
        SET ANSI_NULLS ON
    GO
        SET QUOTED_IDENTIFIER ON
    GO
        ALTER TRIGGER [dbo].[Trigger_TableName]
            ON [dbo].[TableName]
        AFTER INSERT
        AS
            BEGIN
                SET NOCOUNT ON;
                DECLARE @vPointer INT
                EXEC sp_OACreate 'MSXML2.ServerXMLHTTP', @vPointer OUTPUT
                EXEC sp_OAMethod @vPointer, 'open', NULL, 'GET', 'http://server-
name/
                    /Services/wsWorkflow.asmx/Run?WFID=wfid'
                EXEC sp_OAMethod @vPointer, 'send'
                EXEC sp_OADestroy @vPointer
            END

For confirmation of the web services call, you can declare some additional fields if you want and change
the last few lines to:

EXEC sp_OAMethod @vPointer, 'responseText'
EXEC sp_OAMethod @vPointer, 'Status', @vStatus OUTPUT
EXEC sp_OAMethod @vPointer, 'StatusText', @vStatusText OUTPUT
EXEC sp_OADestroy @vPointer
SELECT @vStatus AS Status, @vStatusText AS StatusText,
    @vResponseText AS Response

REST Services #
Microsoft natively provides a non-SOAP (REST) interface to some web services, if the service requires no
parameters, or only parameters of the primitive types bool, int, or string. To check to see if a particular
web service supports a REST interface, you can navigate to the service page for a web service, e.g., the
"services/wsForm.asmx" page, and click on one of the web service calls. If the web service call provides an
"HTTP GET" operation, then it can use a REST call to run the service. This isn't a feature that is managed

Developer's Reference Guide | 325

Installation Settings Properties.htm


BP Logix Inc
Process Director Documentation

or edited by BP Logix; it is a native feature of web services that has been implemented by Microsoft, and
is subject to change at their discretion.

You can call these services via with the standard HTTP GET protocol (using a simple URL). A custom vari-
able, fWebServiceAllowCredentialsURL is set to "true" as a default, to allow credentials to be passed on
the URL.

REST URLs should be in the following format:

http://RESTServiceURL?parameterName=parameterValue&otherParam=otherValue

The “bpUserId” and “bpPassword” parameters are necessary to authenticate with Process Director when
using REST APIs. The credentials you pass can be for any user that has permission to invoke a Web Ser-
vice, irrespective of whether that user is a System Administrator.

Be advised that using the bpUSERID or bpPassword parameter requires sending the User ID and
Password in clear text, so be mindful of the security implications of transmitting these values and
limit the calls to the localhost. Secure the rest calls using the IP address white list in the install-
ation settings.

Other REST Services
In addition to the built-in REST services in Process Director, implementers can also use Business Values to
retrieve and use REST data in any desired context. Additionally, two Web Service Custom Tasks to retrieve
REST data from any accessible REST web service to Fill Fields or Fill Dropdowns with REST data.

For more information about accessing and using external REST services, please refer to the REST Services
topic.

Web Service Authentication Settings #
A web service call can be made without requiring authentication if the web service is being called from a
source that is listed as a “Local IP Address” in the installation settings in Process Director.

If an IP address is listed in the “Web Service Restrictions” than web service calls can only be made from
those IP addresses.

326 | Developer's Reference Guide

Business Values.htm
Web Services Custom Tasks.htm#FillFieldsFromREST
Web Services Custom Tasks.htm#FillDDFromREST


BP Logix Inc
Process Director Documentation

Extending BP Logix Web Services #
You can also write new or extend the web services provided by BP Logix by developing your own custom
.ASMX pages in the custom folder. Your new Web Service, for example, can be a “proxy” to a remote web
service that takes a parameter list that the Web Service Custom Tasks support. Or you can provide Web
Services that search for and return custom data.

See the sample in the /custom/samples/SampleService.asmx.sample file. Notice that the Web Service is
derived from the bpWebService class. This enables you to call any BP Logix SDK API from the new Web Ser-
vice.

Developer's Reference Guide | 327



BP Logix Inc
Process Director Documentation

To extend BP Logix Web Services inside Visual Studio, use the fully functional Visual Studio project
installed with the product named bpVS.zip. Refer to the sample file SampleService.asmx.

Calling Other Web Services #
The easiest way to call Web Services provided by other Enterprise Applications is to use the Web Service
Custom Task. This Custom Task enables you to call a remote Web Service without writing any code. You
can map the inputs and outputs of the Web Service call to Form Fields, system variables, or custom vari-
ables.

Additionally, you can use any .NET language to call other Web Services. To do this, use the .NET WSDL
compiler to generate the proxy code for the Web Service. Then package the proxy into a .DLL and place it
into the /Bin folder of the BP Logix application. Your custom Form, Workflow, or Knowledge View scripts
can then call these Web Services.

Available Web Services
There are many APIs that can be called from any platform that supports Web Services. The BP Logix Web
Services are divided into functional areas, providing separate WSDLs for each area.

The table below briefly describes the Web Service areas. The name of each web service is linked to the
topic page containing the documentation for all of the Web Service calls available for that web service.

WEB SERVICE DESCRIPTION DOCUMENTATION URL / WSDL URL

wsAdmin Services to
retrieve admin-
istrative inform-
ation,
authenticate,
and set context.

http://<servername>/Services/wsAdmin.asmx
http://<servername>/Services/ wsAdmin.asmx?WSDL

wsCase Services to
manipulate
Case instances
and data.

http://<servername>/Services/wsCase.asmx
http://<servername>/Services/ wsCase.asmx?WSDL

wsContent Services to
manipulate con-
tent items (get,
delete, get/set
categories and
meta data, etc),
in the BP Logix
repository.

http://<servername>/Services/wsContent.asmx
http://<servername>/Services/wsContent.asmx?WSDL

wsForm Services to http://<servername>/Services/wsForm.asmx
http://<servername>/Services/wsForm.asmx?WSDL

328 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

WEB SERVICE DESCRIPTION DOCUMENTATION URL / WSDL URL

manipulate
Forms including
getting and set-
ting form data.

wsGroup Services to iter-
ate and manip-
ulate groups.

http://<servername>/Services/wsGroup.asmx
http://<servername>/Services/wsGroup.asmx?WSDL

wsReport Services to run a
report

http://<servername>/Services/wsReport.asmx
http://<servername>/Services/wsReport.asmx?WSDL

wsRule Services to
manipulate Busi-
ness Rules

http://<servername>/Services/wsRule.asmx
http://<servername>/Services/wsRule.asmx?WSDL

wsTimeline Services to
query, start, and
manipulate Pro-
cess Timelines.

http://<servername>/Services/wsTimeline.asmx
http://<servername>/Services/wsTimeline.asmx?WSDL

wsUser Services to iter-
ate and manip-
ulate users.

http://<servername>/Services/wsUser.asmx
http://<servername>/Services/wsUser.asmx?WSDL

wsUtil Utility Services
such as version
query and a user
authenticate.

http://<servername>/Services/wsUtil.asmx
http://<servername>/Services/wsUtil.asmx?WSDL

wsWorkflow Services to
query, start, and
manipulate
Workflows.

http://<servername>/Services/wsWorkflow.asmx
http://<servername>/Services/wsWorkflow.asmx?WSDL

Where <servername> is the host where the product is installed.

Your specific development environment will have documentation to process a WSDL files and calling web
services.

Windows Communication Foundation (WCF) can also be used to call any web service in Process Director.
All Process Director web services have a Web Services Description Language (WSDL) interface, and any
WCF client can consume the web service. Using WCF also allows you to call web services asynchronously.

wsAdmin
The following methods are available in the wsAdmin service.

Authenticate

Developer's Reference Guide | 329



BP Logix Inc
Process Director Documentation

This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: Indication of success.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

GetDatabaseInfo
This method will return various information about Process Director's database.
Input Parameters
Information: The specific information that should be returned. This parameter will accept any of the fol-
lowing values:

l getMaxDBSize
l getMaxSizeNoLog
l getDBSize
l getLogSize
l getDBSizeNoLog
l getMaxLogSize
l getFreeSpace

Returns
Size: Size of the database in megabytes

GetDisabledUsers
This method will get the number of disabled users in Process Director's database.
Input Parameters
None.
Returns
disabledUsers: The number of disabled users in the database.

GetDiskInfo

330 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This method will return info on all local drives.
Input Parameters
None.
Returns
allDrives: The Drive Information for each local drive.

GetLoggedInUsers
This method will get the number of users currently logged in to Process Director.
Input Parameters
None.
Returns
loggedIn: The number of users logged in.

GetMaximumUsers
This method will get the maximum possible number of users for Process Director's license.
Input Parameters
None.
Returns
possibleUsers: The number of possible users.

GetObjectsByType
This method will get the number of specific types of objects in Process Director's database.
Input Parameters
type: The type of object to be returned. This parameter accepts one of the following:

l Workflow
l timeline
l Form
l folder
l document

Returns
objects: number of objects in the database.

GetServerInfo
This method will return information about the server.
Input Parameters
Information: The specific server information to be returned by the web service. The parameter will accept
one of the following:

l CurrentMemory
l PeakVirtual
l CurrentVirtual

Developer's Reference Guide | 331



BP Logix Inc
Process Director Documentation

l PeakMemory
l ProcdessorTime
l StartTime
l PDVersion

Returns
ServerInfo: Requested information about the server as specified in the input parameter.

GetTotalActiveUsers
This method will return the number of active users in Process Director's database.
Input parameters
None.
Returns
activeUsers: number of active users in the database.

GetTotalGroups
This method will get the total number of groups in Process Director's database.
Input parameters
None.
Returns
groups: The number of groups in the database.

GetTotalObjects
This method will get the number of objects in Process Director's database.
Input parameters
None.
Returns
objects: number of objects in the database.

GetTotalUsers
This method will get the total number of users in Process Director's database.
Input parameters
None.
Returns
Users: The number of users in the database.

SendMessageToAll
This method will send a message to all users on a server.
Input parameters
message: The message to be sent to all users.
Returns
success: A Boolean value reflecting success of web services (FALSE if errors, TRUE if successful).

332 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: indication of success.

wsCase
The following methods are available in the wsAdmin service. This service is available to users of Process
Director v4.02 or higher.

Authenticate
This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: The indication of success.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

CreateCase
This method will create a new case instance and pass in initial case property values.
Input Parameters
PID: The type of object to be returned.

PathName: The full path of the case definition or a CASEID.

CaseValues: The list of name/value pairs representing the case properties and their values to be set,
passed as a List<NameValue> object.
Returns
The Case instance of the newly instantiated case, or null if there is an error.

Developer's Reference Guide | 333



BP Logix Inc
Process Director Documentation

CreateSimpleCase
This method will create a new case instance. Initial case property values can be passed in through the
query string.
Input Parameters
PID: The type of object to be returned.

PathName: The full path of the case definition or a CASEID.
Returns
The Case instance of the newly instantiated case, or null if there is an error.

GetCaseByCASEINSTID
This method will return a Case instance from it's Case Instance ID.
Input Parameters
CASEINSTID: The ID of the Case Instance
Returns
The specified Case Instance, or null if not found.

GetCaseData
This method will return a list of all the properties in a case instance and their associated values.
Input Parameters
CASEINSTID: The ID of the case instance.
Returns
A List<NameValue> object containing a list of the case properties and their values.

GetCaseProperties
This method will return a list of the properties associated with a case definition.
Input Parameters
CASEID: The ID of the case Definition.
Returns
A List<NameValue> object containing a list of the case properties and their types.

Instantiate
This method will create a new case instance.
Input Parameters
CASEID: The ID of the case definition to instantiate
Returns
The Case instance of the newly instantiated case.

SetCaseData
This method will set the value of all specified properties in a case instance.

334 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Input Parameters
CASEINSTID: The ID of the case instance.

CaseData: A list of the name/value pairs containing the names of the properties and their respective val-
ues, passed as a List<NameValue> object.
Returns
Boolean: True if the operation succeeds.

SetCaseProperty
This method will set the value of a specified property for a case instance.
Input Parameters
CASEINSTID: The ID of the case instance.

PropertyName: The name of the property whose value will be set.

Value:The value to which the property will be set.
Returns
Boolean: True if the operation succeeds.

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls
Returns
Boolean: True if the operation succeeds.

wsContent
These web services allow you to manipulate Process Director content objects programmatically.

AppendPath
This method will create all subfolders under the indicated folder by the path to append.
Input parameters
pFID: The ID of the Folder.

pPath: The path to append underneath the folder.
Returns
Folder: The new folder corresponding to the path we appended.

AttributeExists
This method returns a boolean value after determining whether a specified Meta Data Attribute exists. If
the Attribute exists, the service will return "true".
Input parameters
PID: The Partition ID or Name containing the folder.

Developer's Reference Guide | 335



BP Logix Inc
Process Director Documentation

CategoryName: The name of the category to evaluate.
Returns
Boolean: Whether the Attribute exists.

Authenticate
This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: The indication of success.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

CategoryExists
This method returns a boolean value after determining whether a specified Meta Data Category exists. If
the Attribute exists, the service will return "true".
Input parameters
PID: The Partition ID or Name containing the folder.

AttributePath: The name of the category to evaluate.
Returns
Boolean: Whether the Category exists.

CreateNewFolder
This method will create all subfolders under the indicated folder by the path to append.
Input parameters
pFID: The ID of the Folder

pPath: The path to append underneath the folder.
Returns
Folder: The new folder corresponding to the path you appended.

CreatePath

336 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

This method will create a path including all subfolders under the indicated partition.
Input parameters
pPID: The ID of the Partition.

pPath: The path to create in the Partition.
Returns
Folder: The new folder corresponding to the path you created.

DeleteObject
This method deletes an object from the content repository.
Input parameters
ID: The ID of the object.
Returns
None.

DeleteObjectAndChildren
This method deletes an object and ALL children and sub-Workflows (if this is a process instance) from the
content repository.
Input parameters
ID: The ID of the object.
Returns
None.

GetAttribute
This method will get an object's attribute value.
Input Parameters
ID: The ID of the object.

Category: The name of the category.

Attribute: The name of the attribute.
Returns
The attribute value

GetFolderByID
This method will get a folder by its ID.
Input Parameters
ID: The ID of the Folder.
Returns
Folder: The actual folder or null if not found.

GetFolderByPathName
This method will get a folder from its path in the repository.

Developer's Reference Guide | 337



BP Logix Inc
Process Director Documentation

Input parameters
PID: The Partition ID or Name containing the folder.

PathName: The full path of the folder (e.g. /My Documents/sales/).
Returns
Folder: The actual folder or null if not found.

GetObjectByID
This method will get an object from its ID.
Input parameters
ID: The ID of the object.
Returns
ContentObject: The actual object or null if not found.

GetObjectByPathName
This method will get an object from its path in the repository.
Input parameters
PID: The Partition ID or Name containing the object.

PathName: The full path of the object (e.g. /My Documents/Document.doc).
Returns
ContentObject: The actual object or null if not found.

GetObjectsFromParentID
This method will return all objects that are children of the object at the specified path.
Input parameters
PID: The Partition ID or Name containing the object.

Path: The full path of the object (e.g. /My Documents/Document.doc).
Returns
List: A list containing the children of the parent object.

GetObjectsFromParent
This method will return all objects that are children of the object at the specified path.
Input parameters
PID: The Partition ID or Name containing the object.

Path: The full path of the object (e.g. /My Documents/Document.doc).
Returns
List: A list containing the children of the parent object.

GetPartitions
This method will return all objects that are children of the object at the specified path.

338 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Input parameters
None
Returns
List: A list containing the Partition attributes.

GetRootFolder
This method will get the root folder object for a partition.
Input parameters
PID: The Partition ID or Name to find
Returns
FolderObject: The actual root object or null if not found.

ImportXML
This method imports an XML package into the Content List.
Input parameters
PID: The Partition ID where the import will occur

ParentFolderID: The ID parent object for the import

XMLData: The bytes of the XML document to import
Returns
RetMsg: The list of output strings after the import

MoveObject
This method moves a content object.
Input parameters
ID: The ID of the object to be moved.

DestinationID: The object under which the item identified by the ID will be moved.
Returns
None.

RunKView
This runs a Knowledge View and returns the results.
Input parameters
KVID: The Knowledge View ID to run.

Filter: The optional list of filter data.

StartFID: The optional Folder ID to start.

StartCATID: The optional Category ID to start.
Returns
Output: The list of output rows.

SetAttribute

Developer's Reference Guide | 339



BP Logix Inc
Process Director Documentation

This method will set an object's attribute value (and indirectly its category).
Input parameters
ID: The ID of the object.

Category: The name of the category.

Attribute: The name of the attribute.

Value: The value to set.
Returns
None.

SetAttributes
This method will set an object's attribute values (and indirectly its category).
Input parameters
ID: The ID of the object.

Attributes: The List of attribute names and values.
Returns
None.

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: The indication of success.

SetExternalAttribute
This method will set an object's attribute based on its external attribute.
Input parameters
ID: The ID of the object.

Name: The name of the external attribute.

Value: The value to set.
Returns
None.

SetExternalAttributes
This method will set an object's attributes based on its external attribute.
Input parameters
ID: The ID of the object

Attributes: The List of External attribute names and values

340 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
None.

SetGroupName
This method will set an object's Group Name property.
Input parameters
ObjectID: The ID of the object

ParentID: The ID of the object's parent object

GroupName: Group name to be assigned
Returns
None.

SetMetaData
This method will get an object's meta data and optionally attribute values.
Input parameters
ID: The ID of the object

XML_Data: The XML string representing the Category and Attribute values to set
Returns
None.

wsForm
These web services enable you to manipulate Process Director forms programmatically.

Authenticate
This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: True of the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.

Developer's Reference Guide | 341



BP Logix Inc
Process Director Documentation

Returns
JSON: The Session ID.

CreateForm
This method will create a new form instance and pass in initial form values.
Input Parameters
PID: The Partition ID or Name.

PathName: The full path of the form definition (e.g. /Forms/My Form) or a FORMID.

FormValues: The list of name/value pairs to set in the new form instance.

SkipDefaultValues: Set to true to skip merging default form values the first time the form is viewed.
Returns
FormInstance: The new form instance or null if an error prevents execution of the operation.

CreateFormEx
This method will create a new form instance and pass in initial form values. Unlike CreateForm,
CreateFormEx allows you to pass in the name of the new form instance manually.
Input Parameters
PID: The Partition ID or Name.

PathName: The full path of the form definition (e.g. /Forms/My Form) or a FORMID.

FormValues: The list of name/value pairs to set in the new form instance.

SkipDefaultValues: Set to true to skip merging default form values the first time the form is viewed.

FormInstanceName: Optionally used to set new form instance name.
Returns
FormInstance: The new form instance or null if an error prevents execution of the operation.

CreateFormEx2
This method will create a new form instance and pass in initial form values, and will include both the
Value and Display Text for dropdown fields. CreateFormEx2 has the same options as CreateFormEx, but
instead of taking a List<NameValue> parameter to set the form field values, it takes a List<NameTex-
tValue> parameter. The NameValue type only allows you to set a name, value, and number (which is
simply a numerical representation of the field's value). The NameTextValue also allows you to set a Text
property, which can be distinct from the Value property. This is particularly useful when setting drop-
downs, where the text of a dropdown selection and its value are often different.
Input Parameters
PID: The Partition ID or Name.

PathName: The full path of the form definition (e.g. /Forms/My Form) or a FORMID.

FormValues: The list of name/value pairs to set in the new form instance.

SkipDefaultValues: Set to true to skip merging default form values the first time the form is viewed.

FormInstanceName: Optionally used to set new form instance name.

342 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
FormInstance: The new form instance or null if an error prevents execution of the operation.

CreateSimpleForm
This method will create a new form instance. Initial form values can be passed on the query string, which
enables you to create a form and populate form fields. Form fields are identified using a URL parameter
with the prefix "EXT_". For instance, a Field called "FirstName" on the Form can be populated via URL Para-
meter as "EXT_FirstName=Bob". This would result in the following URL:

http://servername.com/services/wsform.asmx/CreateSimpleForm?PID=ID&
    PathName=Path&SkipDefaultValues=false&EXT_FirstName=Bob

Input Parameters
PID: The Partition ID or Name.

PathName: The full path of the form definition (e.g. /Forms/My Form) or a FORMID.

SkipDefaultValues: Set to true to skip merging default form values the first time the form is viewed.

EXT_SomeFieldName: A form field you wish to populate with a value when the Form is created.
Returns
FormInstance: The new form instance or null if an error prevents execution of the operation.

GetFormByFORMINSTID
This method will get a form instance from its FORMINSTID.
Input Parameters
FORMINSTID: The ID of the Form Instance.
Returns
FormInstance: The actual form instance or null if not found.

GetFormData
This method will get all form data from a form instance.
Input Parameters
FORMINSTID: The ID of the Form Instance.
Returns
List: The list of name/value pairs in this form instance.

GetFormDataEx
This method will get all form data from a form instance, and will include both the Value and Display Text
for dropdown fields.
Input Parameters
FORMINSTID: The ID of the Form Instance.
Returns
List: The list of name/value pairs in this form instance.

Developer's Reference Guide | 343



BP Logix Inc
Process Director Documentation

GetFormSchema
This method will return the form schema for all form controls.
Input Parameters
FORMID: The ID of the Form Definition.
Returns
List: The list of form fields and their types.

GetFormSchemaEx
This method will return the form schema for all form controls, and will include both the Value and Display
Text for dropdown fields.
Input Parameters
FORMID: The ID of the Form Definition.
Returns
List: The list of form fields and their types.

Instantiate
This method will instantiate a new form instance.
Input Parameters
FORMID: The ID of the Form to create.

SkipDefaultValues: Set to true to skip merging default form values the first time the form is viewed.
Returns
FormInstance: The new form instance or null if an error prevents execution of the operation.

RecalcFormInstanceName
This method will force the form instance name to be recalculated.
Input Parameters
FORMINSTID: The ID of the Form Instance.
Returns
Boolean: True if the operation succeeds.

SearchForms
This method will search form instances for values.
Input Parameters
PID: The Partition ID or Name.

FORMID: Optional FORM ID to limit search.

ControlName: The name of the form control to search.

Value: The value to search for.
Returns
SearchResult: An array of search results that match the search criteria. The array contains the following
values for each form that is returned in the array.

344 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

l PID
l FORMID
l FORMINSTID
l FCID

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: The indication of success.

SetFormData
This method will set form data for a form instance.
Input Parameters
FORMINSTID: The ID of the Form Instance.

FormValues: The list of name/value pairs to set in this form instance.
Returns
Boolean: True if the operation succeeds.

SetFormDataEx
This method will set form data for a form instance, and will include both the Value and Display Text for
dropdown fields.
Input Parameters
FORMINSTID: The ID of the Form Instance.

FormValues: The list of name/value pairs to set in this form instance.
Returns
Boolean: True if the operation succeeds.

SetFormDataField
This method will set form data for a single form field for a form instance.
Input Parameters
FORMINSTID: The ID of the Form Instance.

FieldName: The form field name to set.

FieldName: The value of the form field.
Returns
Boolean: True if the operation succeeds.

wsGroup
These web services enable you to manipulate Process Director user groups programmatically.

Developer's Reference Guide | 345



BP Logix Inc
Process Director Documentation

AddGroupToWorkspace
This method will add a Group to a specified Workspace.
Input Parameters
GID: The Group ID of the Group to add.

PROFILEID: The ProfileID of the Workspace to which to add the user.
Returns
Boolean: True if the operation succeeds.

Authenticate
This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

CreateGroup
This method will create a group.
Input parameters
GroupName: The Group Name to add.
Returns
Group: The new group object that was created, or null if an error prevents execution of the operation.

DeleteGroup
This method will delete a group.
Input parameters
GID: The GID of the group to delete
Returns
Boolean: True if the operation succeeds.

346 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

EnumerateUserGroups
This method returns a list of all groups in the system.
Input parameters
None
Returns
String: Comma-separated list of groups.

GetGroupByID
This method will get a Group from its ID.
Input parameters
GID: The ID of the group to retrieve.
Returns
Group: The actual Group or null if the Group isn't found.

GetGroupByName
This method will get a Group from its Name.

GroupName: The name of the group to retrieve.
Returns
Group: The actual Group or null if the Group isn't found.

GetUsers
This method will get a list of users assigned to a Group.
Input parameters
GID: The ID of the group to retrieve.
Return
User: An array containing all of the users assigned to the group. For each user, the array will contain the
following values:

l UID
l AuthType
l UserName
l UserID
l Email
l AvgLoginSecs
l Groups: An array containing all of the groups of which the user is a member

o Group

n GID
n GroupName

RemoveFromGroupWorkspace
This method will remove a Group from a specified Workspace.

Developer's Reference Guide | 347



BP Logix Inc
Process Director Documentation

Input Parameters
GID: The Group ID of the Group to remove.

PROFILEID: The ProfileID of the Workspace from which to remove the Group.
Returns
Boolean: True if the operation succeeds.

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input parameters
UID: The ID of the user to use for the context of all calls
Returns
Boolean: True if the operation succeeds.

wsReport
These web services enable you to manipulate Process Director reports programmatically.

Authenticate
This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

ExportReport
This method will export a report to the local file system or into the Content List.
Input Parameters
RID: The Report ID of the report to export.

348 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

ExportName: The file name to export with extention (PDF, DOCX, XLSX, PPTX, etc.).

ContentParentID: The ID of the parent in the Content List to save the exported file.

ContentFolderPath: The full folder path in the Content List to save the exported file.

LocalFolderPath: The path to the folder in the local file system to save the exported file.
Returns
Boolean: True if the operation succeeds.

ExportReportEx
This method will export a report to the local file system or into the Content List.
Input Parameters
RID: The Report ID to export.

ExportName: The file name to export with extention (PDF, DOCX, XLSX, PPTX, etc.).

ContentParentID: The ID of the parent in the Content List to save the exported file.

ContentFolderPath: The full folder path in the Content List to save the exported file.

LocalFolderPath: The path to the folder in the local file system to save the exported file.

Variables: The list of variables to pass to the report.
Returns
Boolean: True if the operation succeeds.

GetReportByRID
This method will get a report definition from its RID.
Input Parameters
RID: The ID of the Report Definition
Returns
ReportDefinition: The actual report definition or null if the report isn't found.

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls
Returns
Boolean: True if the operation succeeds.

wsRule
These web services enable you to manipulate Process Director Business Rules programmatically.

Authenticate
This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service

Developer's Reference Guide | 349



BP Logix Inc
Process Director Documentation

calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

Evaluate
This method will evaluate a rule.
Input Parameters
RULEID: The ID of the Rule Definition.

Context: Optional context passed to rule.

Variables: Optional list of variables passed to rule.
Returns
The result of the rule evaluation.

GetRuleByRULEID
This method will get a rule definition from its RULEID.
Input Parameters
RULEID: The ID of the Rule Definition.
Returns
RuleDefinition: The actual rule definition or null if not found.

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: True if the operation succeeds.

350 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

wsTimeline
These web services enable you to manipulate Process Timelines programmatically.

AddToTimeline
This method will add an object to a timeline instance.
Input Parameters
TLINSTID: The ID of the Timeline Instance.

ID: The ID of the object to add.

Type: ObjectType - The type of object to add.

Group: The optional group name to add the object into.
Returns
TimelineInstance: The timeline instance in which the call ran (or null if an error occurred).

AddUsersToActivity
This method will add user(s) to a specific Timeline instance.
Input Parameters
ACTINSTID: The Timeline Activity Instance ID

UID: Comma separated list of UIDs to add
Returns
Boolean: True if the operation succeeds.

Authenticate
This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

Cancel

Developer's Reference Guide | 351



BP Logix Inc
Process Director Documentation

This method will cancel a running Timeline instance.
Input Parameters
TLINSTID: The ID of the TimelineInstance
Returns
TimelineInstance: The actual Timeline instance that was canceled, or Null if not found.

GetActivityByACTID
This method will return a Timeline Activity for a specific Timeline instance.
Input Parameters
TLINSTID: The Timeline Instance ID.

ACTID: The Timeline Activity ID to retrieve.
Returns
TimelineActivity: The parent Timeline Activity for the timeline instance passed to the service  (or null if an
error occurred).

GetActivityByName
This method will return a Timeline Activity for a specific Timeline instance.
Input Parameters
TLINSTID: The Timeline Instance ID.

ActName: The Timeline Activity name to retrieve.
Returns
TimelineActivity: The parent Timeline Activity for the timeline instance passed to the service  (or null if an
error occurred).

GetTimelineByTLID
This method will get a Timeline definition from its TLID.
Input Parameters
TLID: The ID of the Timeline Definition.
Returns
TimelineDefinition: The actual Timeline definition or null if the timeline isn't found.

GetTimelineByTLINSTID
This method will get a timeline instance from its TLINSTID.
Input Parameters
TLINSTID: The ID of the Timeline Instance.
Returns
TimelineDefinition: The actual Timeline definition or null if the timeline isn't found.

Instantiate
This method will instantiate a Timeline Instance from a TLID.

352 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Input Parameters
TLID: The ID of the Timeline Definition to instantiate.

InitiatorUID: The optional UID of the Timeline initiator.
Returns
TimelineInstance: The actual Timeline instance or null if the timeline isn't found.

PostEvent
This method will post an event to a timeline that is waiting on a Wait activity.
Input Parameters
TLINSTID: The optional ID of the Timeline Instance to POST

EventName: The optional Event Name to post.
Returns
Boolean: True if the operation succeeds.

RemoveUsersFromActivity
This method will remove user(s) from a specific activity instance.
Input Parameters
ACTINSTID: The Timeline Activity Instance ID.

UID: Comma separated list of UIDs to add.
Returns
Boolean: True if the operation succeeds.

Restart
This method will restart an existing Timeline instance TLINSTID at an optional activity ACTID.
Input Parameters
TLINSTID: The ID of the Timeline Instance to restart.

ACTID: The ACTIVITY ID of the ACTIVITY in the Timeline definition to restart (optional).
Returns
TimelineInstance: The Timeline instance which the call restarted (or null if an error occurred).

Run
This method will instantiate and run a Timeline Instance from a TLID.
Input Parameters
TLID: The ID of the Timeline Definition to run.
Returns
TimelineInstance: The Timeline instance which the call ran (or null if an error occurred).

RunTimeline
This method will create and run a new Timeline instance and optionally add a Timeline object.

Developer's Reference Guide | 353



BP Logix Inc
Process Director Documentation

Input Parameters
PID: The Partition ID or Name.

PathName: The full path of the Timeline definition (e.g. /Process/My Timeline).

ID: The ID of the object to add.

Type: ObjectType - The type of object to add.

Group: The optional group name to add the object into.

InitiatorUID: The optional UID of the Timeline initiator.
Returns
TimelineInstance: The Timeline instance which was created (or null if an error occurred).

RunTimelineWithForm
This method will create a new form instance, a new Timeline instance and attach the form.
Input Parameters
PID: The Partition ID or Name.

TimelinePathName: The full path of the Timeline definition (e.g. /Process/My Timeline).

FormPathName: The full path of the form definition (e.g. /Forms/My Form).

FormValues: The list of name/value pairs to set in the new form instance.

SkipDefaultValues: Set to true to skip merging default form values the first time the form is viewed.

Group: The optional group name to add the object into.

InitiatorUID: The optional UID of the Timeline initiator.
Returns
TimelineInstance: The Timeline instance which was created (or null if an error occurred).

SetActivityDueDate
This method will set a Due Datefor a specific Activity instance.
Input Parameters
ACTINSTID: The Timeline Activity Instance ID.

dateDue: The Date/Time value to represent the Activity's due Date.
Returns
Boolean: True if the operation succeeds.

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: True if the operation succeeds.

354 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Start
This method will start an instantiated Timeline Instance.
Input Parameters
TLINSTID: The ID of the Timeline Instance to start.
Returns
TimelineInstance: The actual Timeline Instance for which the context was set.

wsUser
These web services enable you to manipulate Process Director Users programmatically.

AddUserToGroup
This method will add a user to a specified group.
Input Parameters
UID: The UID of the user to add.

GID: The GID of the group to which to add the user.
Returns
Boolean: True if the operation succeeds.

AddUserToWorkspace
This method will add a user to a specified Workspace.
Input Parameters
UID: The UID of the user to add.

PROFILEID: The ProfileID of the Workspace to which to add the user.
Returns
Boolean: True if the operation succeeds.

Authenticate
This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.

Developer's Reference Guide | 355



BP Logix Inc
Process Director Documentation

Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

CreateExternalUser
This method will create an external user.
Input Parameters
UserID: The User ID to add.

Email: The email address of the user.

UserName: The name of the user.

GUID: The external GUID of this user record.

UserType: The authentication type for this user.
Returns
User: The new user object that was created, or null if an error occurred.

CreateExternalUser2
This method will create an external user.
Input Parameters
UserID: The User ID to add.

Email: The email address of the user.

UserName: The name of the user.

GUID: The external GUID of this user record.

UserType: The authentication type for this user.
Returns
User: The new user object that was created, or null if an error occurred.

CreateUser
This method will create a user.
Input Parameters
UserID: The User ID to add.

Email: The email address of the user.

UserName: The name of the user.

Password: The password of the user.

MustChangePassword: True if the user must change password on first login.
Returns
User: The new user object that was created, or null if an error occurred.

356 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

CreateUserInGroup
This method will create a user, and add the user to a specified Group.
Input Parameters
UserID: The User ID to add.

Email: The email address of the user.

UserName: The name of the user.

Password: The password of the user.

MustChangePassword: True if the user must change password on first login.

Group: The Group to which to add the user
Returns
User: The new user object that was created, or null if an error occurred.

DelegateUser
This method will delegate a user's tasks to another user.
Input Parameters
SrcUID: The UID of the source user.

DelegateToUID: The UID of the user to whom to delegate.
Returns
Boolean: True if the operation succeeds.

DeleteUser
This method will delete a user.
Input Parameters
UID: The UID of the user to delete.
Returns
Boolean: True if the operation succeeds.

DisableUserAccount
This method will disable the specified user's account and cancel the user in any active Workflow tasks.
Input Parameters
UID: The UID of the user whose account will be disabled.

ReplacementUID [optional]: The UID of a user who will be assigned in place of the disabled user.
Returns
Boolean: True if the operation succeeds.

EnableUserAccount
This method will enable the specified user's account.
Input Parameters
UID: The UID of the user whose account will be enabled.

Developer's Reference Guide | 357



BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

GetUserByExtID
This method will get a User from its external ID field.
Input Parameters
ExtID: The external ID of the user.
Returns
User: The actual user or null if not found.

GetUserByID
This method will get a User from its UID.
Input Parameters
UID: The UID of the user.
Returns
User: The actual user or null if the user isn't found.

GetUserByUserID
This method will get a User from its UserID.
Input Parameters
UserID: The UserID of the user.
Returns
User: The actual user object or null if the user isn't found.

LockUserAccount
This method will lock the specified user's account.
Input Parameters
UID: The UID of the user whose account will be locked.
Returns
Boolean: True of the operation succeeds.

RemoveUserFromAllGroups
This method will remove a User from all user groups on the system.
Input Parameters
UID: The ID of the user to remove.
Returns
Boolean: True if the operation succeeds.

RemoveUserFromGroup
This method will remove a User from all user groups on the system.

358 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Input Parameters
UID: The ID of the user to remove.

GID: The GID of the group from which to remove the user.
Returns
Boolean: True if the operation succeeds.

RemoveUserFromWorkspace
This method will remove a user from a specified Workspace.
Input Parameters
UID: The UID of the user to remove.

PROFILEID: The ProfileID of the Workspace from which to remove the user.
Returns
Boolean: True if the operation succeeds.

This function will also return "false" if the user is only implicitly in the workspace, i.e., only in it
because he is part of a Group that is assigned to the Workspace, rather than being assigned to it dir-
ectly as a Workspace user. If you want to remove an implicit user from a workspace, you have to
remove the user from the group, or remove the group from the workspace.

ReplaceUser
This method will replace the user (UID) with another user (ReplacementUID) throughout the system.
Input Parameters
UID: The UID of the user whose account will be replaced.

ReplacementUID: The UID of a user who will be assigned in place of the disabled user.
Returns
Boolean: True if the operation succeeds.

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: True if the operation succeeds.

UnDelegateUser
This method will stop the delegation of a user's tasks.
Input Parameters
UID: The UID of the user for whom to stop delegation.

Developer's Reference Guide | 359



BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

UnlockUserAccount
This method will unlock the specified user's account.
Input Parameters
UID: The UID of the user whose account will be unlocked.
Returns
Boolean: True if the operation succeeds.

UpdateUserFields
This method will update a user's information in the database. This method won't save any blank fields con-
tained in the user's record.
Input Parameters
pUser: A User class containing the user's ID and the information to be updated.
Returns
Boolean: returns "true" if the operation succeeds.

UpdateUserLastActivityTime
This method will update the user object so set the current time as the last activity time for that user.
Input Parameters
UID: The UID of the user to update.
Returns
DateTime: The DateTime value of the time the user activity was updated.

UpdateUserRecord
This method will update a user's information in the database.
Input Parameters
pUser: A User class containing the user's ID and the information to be updated.

ignoreEmptyFields: A boolean that, when set to "false", will save all empty values in the pUser parameter
into the database (normally these are ignored).
Returns
Boolean: Returns "true" if the operation succeeds.

wsUtil
These web services enable you to perform various utility functions programmatically.

Authenticate
This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.

360 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

ConvertSysVarsInString
This method will convert system variables in a given string.
Input Parameters
pString: The string to evaluate
Returns
String: The converted string.

GetUserTasks
This method will retrieve the task list for a user.
Input Parameters
PID: The Partition ID in which to locate the tasks. You may pass an empty string to retrieve from all par-
titions.

User: The UserID of the user whose task list to return.
Returns
String: An array of URL strings for task list entries.

GetUserTasksByEmail
This method will retrieve the task list for a user. This is most commonly used for unauthenticated users,
who are only identifiable by email address.
Input Parameters
PID: The Partition ID in which to locate the tasks (pass the empty string for all partitions).

Email: The email address of the user whose task list to return.
Returns
String: An array of URL strings for task list entries.

GetUserTasksByUID

Developer's Reference Guide | 361



BP Logix Inc
Process Director Documentation

This method will retrieve the task list for a user.
Input Parameters
PID: The Partition ID in which to locate the tasks (pass the empty string for all partitions).

User: The UID of the user whose task list to return.
Returns
String: An array of URL strings for task list entries.

ImportGlobalKViewXML
This imports an XML package into the Global Knowledge View list.
Input Parameters
XMLData: The bytes of the XML document to import.
Returns
RetMsg: The list of output strings after the import.

ImportProfilesXML
This imports an XML package into the Profiles.
Input Parameters
XMLData: The bytes of the XML document to import.
Returns
RetMsg: The list of output strings after the import.

LoadBalancedRequest
This method is called when a load-balanced system performs some action.
Input Parameters
Action: The description of the action to perform
Return
Success: A Boolean value reflecting the success of the web service (FALSE if errors, TRUE if successful).

SequenceNumber
This method will get a unique sequence number.
Input Parameters
Group: The optional group from which the sequence is generated.
Returns
The unique sequence number or 0 if an error occurs.

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls

362 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

Version
This method will return the server version.
Input Parameters
None.
Returns
Version: The server version number.

VersionString: The server version string.

wsWorkflow

The Workflow object is the legacy process model used in early versions of Process Director.
BP Logix recommends the use of the Process Timeline object, and not the Workflow object. The
Workflow object remains in the product for backwards compatibility, but doesn't receive any new
functionality updates, other than required bug fixes. No new features have been added to this
object since Process Director v4.5. All new process-based functionality is solely added to the Pro-
cess Timeline.

These web services enable you to manipulate Process Director Workflows programmatically.

AddToWorkflow
This method will add an object to a Workflow instance.
Input Parameters
WFINSTID: The ID of the Workflow Instance.

ID: The ID of the object to add.

Type: ObjectType - The type of object to add.

Group: The optional group name to add the object into.
Returns
WorkflowInstance: The Workflow instance which the call ran (or null if an error occurred).

AddUsersToStep
This method will add user(s) to a specific step instance.
Input Parameters
STINSTID: The Workflow Step Instance ID.

UID: Comma separated list of UIDs to add.
Returns
Boolean: True if the operation succeeds.

Authenticate

Developer's Reference Guide | 363

Process Timelines.htm


BP Logix Inc
Process Director Documentation

This method will authenticate web service requests. Call this method prior to other web service calls. It
will automatically populate the SOAP header with a validation token that enables subsequent web service
calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other web service calls. The
return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Password: The password for this UserID.
Returns
JSON: The Session ID.

Cancel
This method will cancel a running Workflow instance.
Input Parameters
WFINSTID: The ID of the Workflow Instance
Returns
WorkflowInstance: The actual Workflow instance that was canceled, or Null if not found.

GetWorkflowByWFID
This method will get a Workflow definition from its WFID.
Input Parameters
WFID: The ID of the Workflow Definition
Returns
WorkflowDefinition: The actual Workflow definition, or null if not found.

GetWorkflowByWFINSTID
This method will get a Workflow instance from its WFINSTID.
Input Parameters
WFINSTID: The ID of the Workflow Instance.
Returns
WorkflowInstance: The actual Workflow instance, or null if not found.

GetWorkflowStepByName
This method will return a Workflow Step for a specific Workflow instance.

364 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Input Parameters
WFINSTID: The Workflow Instance ID.

StepName: The Workflow Step name to retrieve.
Returns
WorkflowStep: The Workflow Step, or null if an error occurred.

GetWorkflowStepBySTID
This method will return a Workflow Step for a specific Workflow instance.
Input Parameters
WFINSTID: The Workflow Instance ID.

STID: The Workflow Step ID to retrieve.
Returns
WorkflowStep: The Workflow Step, or null if not found.

Instantiate
This method will instantiate a Workflow Instance from a WFID.
Input Parameters
WFID: The ID of the Workflow Definition to instantiate.

InitiatorUID: The optional UID of the Workflow initiator.
Returns
WorkflowInstance: The Workflow instance which the call instantiated, or null if an error occurred.

PostEvent
This method will post an event to a Workflow that is waiting on a Wait step.
Input Parameters
WFINSTID: The optional ID of the Workflow Instance to POST.

EventName: The optional Event Name to post.
Returns
Boolean: True if the operation succeeds.

RemoveUsersFromStep
This method will remove user(s) from a specific step instance.
Input Parameters
STINSTID: The Workflow Step Instance ID.

UID: Comma separated list of UIDs to add.
Returns
Boolean: True if the operation succeeds.

Restart
This method will restart an existing Workflow instance WFINSTID at an optional step STID.

Developer's Reference Guide | 365



BP Logix Inc
Process Director Documentation

Input Parameters
WFINSTID: The ID of the Workflow Instance to restart.

STID: The STEP ID of the STEP in the Workflow definition to restart (optional).
Returns
WorkflowInstance: The Workflow instance which the call restarted, or null if an error prevents execution
of the operation.

Run
This method will instantiate and run a Workflow Instance from a WFID.
Input Parameters
WFID: The ID of the Workflow Definition to run.
Returns
WorkflowInstance: The Workflow instance which the call ran , or null if an error prevents execution of the
operation.

RunWorkflow
This method will create and run a new Workflow instance and optionally add a Workflow object.
Input Parameters
PID: The Partition ID or Name.

PathName: The full path of the Workflow definition (e.g. /Workflows/My Workflow).

ID: The ID of the object to add.

Type: ObjectType - Place "NotSet" in this field.

Group: The optional group name to add the object into.

InitiatorUID: The optional UID of the Workflow initiator.
Returns
WorkflowInstance: The Workflow instance which was created , or null if an error prevents execution of the
operation.

RunWorkflowWithForm
This method will create a new form instance, a new Workflow instance and attach the form.
Input Parameters
PID: The Partition ID or Name.

WorkflowPathName: The full path of the Workflow definition (e.g. /Workflows/My Workflow).

FormPathName: The full path of the form definition (e.g. /Forms/My Form).

FormValues: The list of name/value pairs to set in the new form instance.

SkipDefaultValues: Set to true to skip merging default form values the first time the form is viewed.

Group: The optional group name to add the object into.

InitiatorUID: The optional UID of the Workflow initiator.

366 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Returns
WorkflowInstance: The Workflow instance which was created , or null if an error prevents execution of the
operation.

SetContextUID
This method will set the context UID for all future web service calls. For instance, this UID will be used as
the current user for running Knowledge Views, permission checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: True if the operation succeeds.

SetStepDueDate
This method will set a Due Date for a specific step instance.
Input Parameters
STINSTID: The Workflow Step Instance ID.

dateDue: The Date/Time value to represent the Step's due Date.
Returns
Boolean: True if the operation succeeds.

Start
This method will start an instantiated Workflow Instance.
Input Parameters
WFINSTID: The ID of the Workflow Instance to start.
Returns
WorkflowInstance: The actual Workflow Instance.

REST Services
REST (Representational State Transfer) is a standards-based data architecture for sharing data between
computers, using web-based access. Services that use REST are often called RESTful services. A REST ser-
vice usually transfers data from a server-based data store to a client machine that requests it in a spe-
cified format—usually via a specifically configured URL.

The important thing to remember about REST services is that the server and client machines are unre-
lated. The activities on the client are completely unaffected by the activities of the server, and vice versa.
Unlike a connection to a database like SQL server, the client machine does not need to store a connection
string or maintain a constant connection to the server. Similarly, any changes to the code or operations of
either machine have no effect on the other.

The only connection that occurs between the two systems is when the client machine sends a request to
the server via URL, and the server responds by sending back data in a REST-compliant format. This "con-
nection" is also stateless, which is to say that the server and client machines know nothing about each

Developer's Reference Guide | 367



BP Logix Inc
Process Director Documentation

other, outside of a specific REST transaction. A REST transaction consists of a request from the client,
and a response from the server that contains the requested data. The REST request must provide all of
the information necessary for the server to respond to the request properly. The server cannot use any
knowledge of past requests to complete the current request and return a response. Each transaction is
made as if it was an entirely new request, unrelated to any previous requests.

REST is not a programming format. It is purely a set of architectural guidelines for the communications
format used between two systems. As long as each machine knows which format to use for requests and
responses, data can be shared. Because REST is an architectural construct, it is language-independent.
REST services can be constructed in any programming language, and the programming language used by
the client and server are irrelevant to each other. As long as both systems use the correct architecture for
their communication, they can share data.

The REST Request #
A REST Request is a message sent to a server that asks for a response containing data. In most cases, a
REST request is sent to an available URL. The URL may be publicly available as a service on the internet,
or it may be available only inside the same network as the client. As long as the client can access the URL,
however, it can request a REST response from the server.

The URL contained in the REST request is usually formatted in a specific way, in order to match the way in
which the REST service is implemented on the server. For example, the REST service may require the URL
be formatted hierarchically. A notional request URL for a publicly available REST Service that returns the
current weather might be:
https://myrestservice.com/current/zip/92111

The server would interpret this request as asking for the current weather for the 92111 Zip Code.

Alternatively, the URL for the same information might require a URL that uses parameters, such as:
https://myrestservice.com?type=current&zip=92111

Both of these formats can constitute valid requests, as long as the server understands the format.

The REST Request may be more complex than shown above, and require additional information such as
login credentials, specific HTTP header information sent with the request, and Key/Value pairs to provide
parameters, or include other information. In Process Director, much of this additional complexity is hid-
den, but a fully formatted REST request with header information and Key/Value pairs to provide para-
meters for the data to return might look like this.

POST https://myrestservice.com/weather HTTP/1.1
Host: myrestservice.com
Content-Type: application/json
Content-Length: 42
{"Type":"current","Zip":92111}

Business Values have a feature for adding authentication credentials and Key/Value pairs to the
HTTP header, as described in the Business Values topic of the Implementer's Guide.

368 | Developer's Reference Guide

Business Values.htm


BP Logix Inc
Process Director Documentation

The REST Response #
Once the server receives a valid request, the REST Response returns the requested data. Even if there's no
data to return, the server will still send a response, to note that the request was received and fulfilled.
The REST response will be presented in one of two formats, JSON or XML.

Both XML and JSON formats are used to represent data, though each one is very different.

XML is a highly-structured data language. Each element of data is presented in nodes that are set off by
the <> characters, e.g.:
<temperature value="78.66" min="70.56" max="87.89" unit="fahrenheit"/>

JSON, on the other hand, is less highly structured than XML, and data is returned in a JavaScript-based
format, e.g.:
"temperature": {"curr":78.66,"min":70.56,"max":87.89}

This format is not JavaScript, though it is based on the JavaScript language structure. Both JSON and
XML are language-independent formats, and both are essentially formatted text files, though the format-
ting is, as we shall see later in this module, very important.

There are advantages and disadvantages between the two language formats.

l XML, because it's so highly structured, is very good at returning hierarchical data in a more easily com-
prehensible format. It's easier for humans to parse when, as we'll see later, we need to find specific
data in an XML response. On the other hand, XML is relatively verbose, which means that, given the
same data, an XML response might be significantly larger and take up more memory, than a JSON
response.

l JSON, being less structured, is more flexible. A JSON response could structure the data in many dif-
ferent ways, while the highly structured nature of XML limits the way in which data can be returned.
On the other hand, this flexibility means that two similar requests might return data that is structured
slightly differently, meaning that the method you use to parse one request might not work on a sim-
ilar one. Also, JSON's variable structure, and lack of a specific node structure can make JSON less read-
able and harder to parse by humans.

In general, JSON is a more popular format, due in part to its flexibility and versatility, but mainly because
JSON responses are generally more lightweight than XML responses. There are still many REST services
that return XML, or return both formats. In Process Director, both XML and JSON response formats can be
used.

More Information about Rest Services
JSON and XML for REST: How sample XML or JSON REST responses might compare.

JSONPath and XPath: A comparison of the XPath and JSON Path syntax needed to parse XML or JSON
REST responses.

JSON and XML for REST
To illustrate the different between JSON and XML data that might be returned from a REST service, let's
look at a small data sample, and see how it would be represented in each language. For this example,
we'll use a list of file names that might be returned by a REST Service:

Developer's Reference Guide | 369



BP Logix Inc
Process Director Documentation

l Image1.jpg
l Description.docx
l Forecast.xlsx
l Agreement.pdf
l NetworkDiagram.vsdx

XML
<?xml version="1.0"?>
   <Files>
      <item>Image1.jpg</item>
      <item>Description.docx</item>
      <item>Forecast.xlsx</item>
      <item>Agreement.pdf</item>
      <item>NetworkDiagram.vsdx</item>
   </Files>

The structured nature of XML limits how we can represent this data. We must have a "Files" node that con-
tains all of the files. Each file needs its own "Item" node. Because XML is so highly structured, there are
strict limits on how data can be represented.

JSON
JSON is much less structured than XML, and can present this same data in many ways.

Single Elements

{
   "Image":"Image1.jpg",
   "Document1":"Description.docx",
   "Spreadsheet":"Forecast.xlsx",
   "PDF":"Agreement.pdf",
   "Visio":"NetworkDiagram.vsdx"
}

Structured Array

[
{"Files":"Image1.jpg"},
{"Files":"Description.docx"},
{"Files":"Forecast.xlsx"},
{"Files":"Agreement.pdf"},
{"Files":"NetworkDiagram.vsdx"}

]

Unstructured Array Elements

{
   "Files":

[
      "Image1.jpg",
      "Description.docx",
      "Forecast.xlsx",
      "Agreement.pdf",
      "NetworkDiagram.vsdx"
   ]
}

Structured Array Elements

{
   "Files":

[
{"f":"Image1.jpg"},
{"f":"Description.docx"},
{"f":"Forecast.xlsx"},
{"f":"Agreement.pdf"},
{"f":"NetworkDiagram.vsdx"}

   ]
}

While this flexibility is nice, it does mean that you need to know, to a much greater degree than with XML,
how the specific data you get in a response is structured, in order to parse and use it properly.

From an implementer's point of view, you may find XML REST Services easier to work with, if available,
especially if you're just starting to use REST services. The structured nature of XML generally makes it
more readable, and easier to understand.

370 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

More Information about Rest Services
REST Services: An overview of using REST Web Services.

JSONPath and XPath: A comparison of the XPath and JSON Path syntax needed to parse XML or JSON
REST responses.

JSONPath and XPath
In most cases, you'll use a Business Value to request and parse responses from REST Web services. In Pro-
cess Director, the Business Value provides the easiest and most effective method for making REST
requests and using the data that is included in the REST response.

Just like a Business Value that returns SQL data, a REST Business value will receive a response containing
data field values. You must configure a Business Value property for each data field you wish to access
from the REST Response.

For each property, the Property Name column is where you'll provide a name for each property, which will
be used in the Process Director UI. For each field in the REST Response, the Property Type must be set to
REST Data in order to extract the data from a single data field in the REST Response.

An additional setting, Entire REST Response will, as the name implies, simply use the entire XML or JSON
file content as the property value. This setting may be useful if you need to see the REST Response con-
tents to understand how to parse them to extract individual fields.

Parsing the REST Response is very important to ensure you extract the correct data. The Property Value
column is where you provide Process Director with the instructions on which REST Response field you wish
to extract for each property.

Unlike a SQL Business Value, where you simply write the name of a valid database field in this column, a
Rest Business Value requires that you provide detailed instructions for parsing the REST Response, to
extract the data you want.

The parsing syntax you'll need to use will vary, based on whether the REST Response contains data in XML
or JSON Format. Parsing an XML REST response requires you to use a parsing format called XPath, while
parsing a JSON response requires the use of JSONPath.

Time and space do not allow us to provide detailed training on these two parsing formats here. There are
many freely available resources on the Internet for learning the basics of both XPath and JSONPath. Here
are two resources you might find useful, but there are many others:

l XPath: W3Schools.Com
l JSONPath: SmartBear.com

BP Logix does not endorse these resources. They are merely shown here for your convenience.

Let's look at some simple XML and JSON REST Responses to see how we'd parse them using each format.
For this example, we'll use some sample weather data for San Diego, CA. These REST documents are avail-
able on the BP Logix Documentation portal. Those these are static documents, you can use their URL as
the REST URL of a Business Value, for testing on your Process Director installation.

Developer's Reference Guide | 371

Business Values.htm
https://www.w3schools.com/xml/xpath_intro.asp
https://support.smartbear.com/alertsite/docs/monitors/api/endpoint/jsonpath.html


BP Logix Inc
Process Director Documentation

l XML REST Response
l JSON REST Response

You can use the URL for either of these documents

XML and XPath #
The XML REST Response looks like this:

<current>
   <city id="0" name="San Diego">
      <coord lon="-117.2028" lat="32.7635" />
      <country>US</country>
      <timezone>-25200</timezone>
      <sun rise="2023-04-07T13:29:04" set="2023-04-08T02:12:27" />
   </city>
   <temperature value="66.67" min="59.76" max="74.79" unit="fahrenheit" />
   <feels_like value="65.57" unit="fahrenheit" />
   <humidity value="54" unit="%" />
   <pressure value="1017" unit="hPa" />
   <wind>
      <speed value="12.66" unit="mph" name="Moderate breeze" />
      <gusts />
      <direction value="270" code="W" name="West" />
   </wind>
   <clouds value="75" name="broken clouds" />
   <visibility value="10000" />
   <precipitation mode="no" />
   <weather number="803" value="broken clouds" icon="04d" />
   <lastupdate value="2023-04-07T21:39:25" />
</current>

XPath uses the forward slash character (/) to navigate from the highest node to the lowest one. The cur-
rent node is the top node of the XML REST response, and it contains the city, clouds, and tem-
perature nodes.

Part of XML's structured nature is to name each node in the XML structure. At the very top of the
response, the first node is named <current>. Since we have to start our XPath expression at the highest
node, and we need to add a slash between each node, our XPath expression will begin with:
current/

If we want to find the XML node that tells us whether it's clear or cloudy, we'd need to add the <clouds>
node, which is located in the second level of the XML hierarchy:
current/clouds/

The <clouds> node contains two attributes: value and name. We need to get the data in the name attrib-
ute. Attributes are identified using the "At sign" (@), which means that this value is an attribute of the pre-
vious node. So, we need to add this value to our expression as:
current/clouds/@name

This gives us the full XPath expression to access our data, which should return the value broken clouds.

We can use different XPath expressions to return other data from this response, as shown in the table
below.

372 | Developer's Reference Guide

weather.xml
weather.json


BP Logix Inc
Process Director Documentation

Data XPath Expression

City current/city/@name

Country current/city/country

Current Temp current/temperature/@value

Low Temp current/temperature/@min

High Temp current/temperature/@max

JSON and JSONPath #
The JSON REST Response looks like this (Though the formatting makes it look like the JSON Response
contains more information, it is the same length, 859 characters, as the XML response shown above):

{
   "coord": {
      "lon": -117.2028,
      "lat": 32.7635
   },
   "weather": [

{
         "id": 803,
         "main": "Clouds",
         "description": "broken clouds",
         "icon": "04d"
      }
   ],
   "base": "stations",
   "main": {
      "temp": 66.65,
      "feels_like": 65.55,
      "temp_min": 59.76,
      "temp_max": 74.79,
      "pressure": 1017,
      "humidity": 54
   },
   "visibility": 10000,
   "wind": {
      "speed": 12.66,
      "deg": 270
   },
   "clouds": {
      "all": 75
   },
   "dt": 1680903688,
   "sys": {
      "type": 2,
      "id": 2017332,
      "country": "US",
      "sunrise": 1680874144,
      "sunset": 1680919947
   },
   "timezone": -25200,
   "id": 0,
   "name": "San Diego",
   "cod": 200
}

Developer's Reference Guide | 373



BP Logix Inc
Process Director Documentation

JSON path uses a dollar sign character ($) to denote the top or global level of the JSON response. Each
level below that is separated by a period (.)character.

In JSON, each data node in the hierarchy is marked by the use of either curly brackets ({})or square brack-
ets ([]). In general, when counting from the top of the Response, each time we reach a bracket character,
we need to use a period (.) to specify a different node.

The global JSON Response is always specified by using the dollar sign ($) character. So, that's always the
first character of a JSONPath parsing phrase. At the very top of the response is the opening curly bracket
that contains the full response. This curly bracket starts the first node of the response, and we have to
add a period to the JSONPath expression to indicate we are moving to the next lower node in the hier-
archy:
$.

At this level of the response, there are two nodes, coord and weather. If we once again want to extract
the data that indicates whether it's clear or cloudy, the data we need is in the weather node, so we need
to add it to the JSONPath expresson:
$.weather

The weather portion of the JSON response contains several lower-level nodes. The actual data for current
conditions is contained in the main node of the weather portion. But note that, immediately after
weather, there is a square bracket, followed by a curly bracket in the JSON response. Each of these brack-
ets requires that we add a period character as a node marker for each of them, in order to properly count
the nodes between weather and main. Thus, we end up with our completely parsed path of:
$.weather..main

This gives us the full JSONPath expression to access our data, which should return the value Clouds.

We can use different JSON Path expressions to return other data from this response, as shown in the table
below.

Data JSONPath Expression

City $.name

Country $.sys.country

Current Temp $.main.temp

Low Temp $.main.temp_min

High Temp $.main.temp_max

More Information about Rest Services
REST Services: An overview of using REST Web Services.

JSON and XML for REST: How sample XML or JSON REST responses might compare.

374 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Index

.

.NET eForm 8

A

ADAuthNoDomain 219

ADAuthSettings 219

Add 84

AddBottomHTML 117

AddDocumentFromBytes 85

AddDocumentFromFS 85

AddErrorMessage 114

AddGroupToWorkspace 346

AddInfoMessage 115

Adding a New eForm Definition 21

AddJavaScript 116

AddObjectMap 86

AddPending 86

AddRow 26, 129

AddRowToCommentLog 129

AddSAMLGroups 272

AddSAMLGroupsIgnore 273

AddSharedDelegate 181

AddToCase 76

AddToDropDown 129

AddToGroup 181

AddTopHTML 116

AddToProcess 149

AddToProject 165

AddToTimeline 351

AddToWorkflow 193, 363

AddUser 135

AddUsersToActivity 351

AddUsersToStep 363

Developer's Reference Guide | 375



BP Logix Inc
Process Director Documentation

AddUsersToTask 157

AddUserToGroup 355

AddUserToPartition 181

AddUserToProfile 182

AddUserToWorkspace 355

ADGrouphierarchy 220

ADSSLOptions 221

AllowedExportLocations 224

AllowRichTextTemplate 295

AlwaysFindTaskForForms 289

AppendPath 335

Array 27

ArrayMoveDown 28, 31

ArrayMoveUp 28

ArrayRemoveRow 28

AssignCategory 87

Attach 29

AttributeExists 335

Authenticate 330, 333, 336, 341, 346, 348-349, 351, 355, 360, 364

AuthenticateJSON 330, 333, 336, 341, 346, 348, 350-351, 355, 361, 364

AutoMultilineTextBoxResize 296

AutoMultilineTextBoxResizeClass 296

B

BaseURLFromRenderingServer 270

bp Class 63

bpButton 31

bpCheckBox 32

bpFormOpenSize 296

bpImage 32

bpLabel 33

bpPopupOpenSize 296

bpString 33

bpTextBox 33

Building the eForm and Script 61

376 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

BusinessHolidays 238

BusinessHourStart 240, 283

BusinessHourStop 240

ButtonArea 34

C

CacheCount 102

Calculate 35

Calling BP Logix Web Services 328

Calling Other Web Services 328

Cancel 36, 150, 193, 352, 364

CancelTask 157, 177

CancelUser 162, 170

CategoryExists 336

CategoryPicker 36

CheckForAdvance 63, 150

CheckReminderBusinessHours 240

Classes 63

CLASSES 63

ClearCache 102

ClearDropDown 130

ClearJavaScript 116

ClearRows 130

ColumnSum 131

CommentLog 37

CompleteTask 177

CompleteUser 163, 171

Configuration vs. Running 60

Constructor 108, 134

ContentObject Class 82

ContentPicker 37

ControlPicker 38

ConvertSysVarsInString 87, 117, 163, 171, 361

ConvertSysVarsInString (Static Method) 150

Copy 80-81, 174

Developer's Reference Guide | 377



BP Logix Inc
Process Director Documentation

CopyObject 88

CreateCase 76, 333

CreateDummy 117

CreateExternalUser 356

CreateExternalUser (Static Method) 183

CreateExternalUser2 356

CreateFolder 141

CreateForm 342

CreateFormEx 342

CreateFormEx2 342

CreateGroup 135, 346

CreateNewFolder 336

CreateNewFolder (Static Method) 111

CreatePath 337

CreatePath (Static Method) 111

CreatePDFForDocument 143

CreatePDFFromDoc 144

CreatePDFFromDocument 144

CreatePDFFromForm 144

CreatePDFFromImage 145

CreatePDFFromRoutingSlip 145

CreatePDFFromString 145

CreatePDFFromTextFile 146

CreatePDFFromURL 146

CreateSimpleCase 334

CreateSimpleForm 343

CreateSubFolder 111

CreateThumbnail 103, 105

CreateUser 356

CreateUser (Static Method) 182

CreateUserInGroup 357

Creating a Custom Task 61

CREATING ASP.NET EFORMS 21

Culture 207

Custom ASPX Pages 20

378 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Custom Font 318

Custom Fonts 318

Custom Form Control Styles 216

CUSTOM SCRIPTING 10, 12, 16, 19-20, 57

CUSTOM TASKS 59

Custom Timeline Reminder Times 288

Custom Variables 218

Custom Workflow Reminder Times 289

Custom Workflow Step Colors 287, 310

CustomHTMLHeadTags 297

CUSTOMIZATION FILE 212, 218-219, 223, 235, 238, 244, 246, 249, 253, 263, 267, 269, 271-272, 279,
284, 289, 293, 295, 312, 321

Customization through Scripting 8

D

DataSource Class 101

DateDiff 39

DateDiff (Static Method) 64

DatePicker 38

DateTimePicker 39

DBConnectorPicker 40

DBOpenComplete 64

Debugging Process Scripts 17

DecodeLDAPName 183

DefaultBVRestAccept 271

DefaultBVRestContentType 272

DefaultBVRestCredentials 272

DefaultBVRestHeaders 272

DefaultHTMLEncode 241

DefaultInviteEmail 241

DefaultNewUsersToDayPass 321

DefaultPasswordEmail 241

DefaultTimelineEmail 242

DefaultWorkflowEmail 242

DelegateUser 184, 357

DelegationAdminGroups 322

Developer's Reference Guide | 379



BP Logix Inc
Process Director Documentation

Delete 136, 184

DeleteGroup 136, 346

DeleteObject 88, 337

DeleteObjectAndChildren 88, 337

DeleteUser 184, 357

Developing an eForm in the .NET environment 25

Development 63

DisabledTabsDisabled 242

DisableInlineErrorsWithPopup 297

DisableParentRefreshForm 297

DisableUser 185

DisableUserAccount 357

DisableUserEmail 185

Document Object Class 103

Documentation 6

DoValidation 118

DropDown 40

Dropdown Object Class 106

DropdownValue Object Class 107

E

EFORM CONTROLS 26

eForm Custom Tasks 60

eForms 125

EmbedDocumentTypes 284

EnableFormFieldDownload 227

EnableFormThemes 299

EnableReactAdminPages 297

EnableUser 185

EnableUserAccount 357

EnableUserEmail 186

EnumerateUserGroups 347

Evaluate 172, 350

EventLogErrorAudits 238

EventLogInfoAudits 238

380 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

Events 125

Excel Class 108

ExportReport 171, 348

ExportReportEx 349

EXT_User_AutoCreate 273

EXT_User_AutoCreateDisabled 273

Extending BP Logix Web Services 327

F

fADSyncAllowManagerOtherOU 221

fAllowCustomUserString 225

fAllowLoginRememberMe 322

fAllowRetrievePassword 286, 322

fAllowUnencodedSysvarsinBV 284

fAllowV6Import 253

fAuditAnonAccesses 235

fAuditFormAPICalls 235

fAuditFormViews 236

fAuditLogFileOnly 236

fAuthFastLDAP 244

fAuthLDAP 244

fAuthLDAPAutoAdd 244

fAuthLDAPEx 244

fAuthSAMLAllowDuplicateUserIDs 274

fAuthWindows 225

fAuthWindowsIntegrated 226

fAutoDST 226

fCancelSubWorkflows 290

fCloseEditAfterUpload 284

fCONTAINSUseValueSearchOnly 253

fCopyRefsFromRealProcessToKViewProcess 285

fDeleteDocOnRemove 285

fDisableAsyncWorkflow 267

fDisableCSVNumberStringLogic 285

fDisableDetailedAttach 299

Developer's Reference Guide | 381



BP Logix Inc
Process Director Documentation

fDisableExcelImport 226

fDisableImageResize 299

fDisableImplicitPartitionGroupUsers 322

fDisableKViewAppCaches 226-227

fDisableUserPrediction 223

fDisableUserProfileEmailChange 294

fDisableUserRenameOnDisable 323

fDocRemovedInPopup 300

fEnableAccessibility 298

fEnableDatabaseLogs 249

fEnableDenyPermissions 227, 294

fEnableEncryptionMigration 224

fEnableFormFieldDownload 227, 262

fEnableJavaScriptDev 286

fEnableJSURL 228

fEnableKViewFilterOnSavedForLater 300

fEnableMultFormFieldsInCols 253

fEnableMultiLanguage 300

fEnableOldShowAttach 228

fEnableSQLEscape 286

fEnableThumbnails 228, 301

fEnableTransOnKVIEW 254

fEnableTransOnSELECT 254

fEnableUndelegationRestart 290

fForceInviteEmail 290

fFormDataTrans 254

fFormSaveUpdatesOnly 254

fFormSkipDisableFieldsSave 255

fFormSkipHiddenFieldsSave 255

fHideLabelsFromConditions 255

fIgnoreAccessibilityFlag 301

FileUploadBlacklist 287

FileUploadBlacklistAlternateText 287

FillDropDown 131

fIncludeBootstrap 298

382 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

FindControlInForms 118

fInternalDSPadminOnly 267

fInternalUserDSPadminOnly 268

fKeepADSyncInfoLogs 249

fListenToEmailSetting 256

fLoginBgRand 301

fNewSkipPendingLogic 268

Folder Class 110

Fonts 318

ForceHttpOnlyCookies 243

ForceMobileAdvanced 242

ForcePwdChangeEvery 263

ForceSecureCookies 229, 243

ForgotPasswordRedirectURL 263

Form Class 112

Form Scripts 12

FormatCurr (Static Method) 65

FormControl 119

FormControl Class 127

FormControlByID 120

FormControls 119

FormEditorConfig 301, 312

FormErrorStrings 41

FormFieldsAllowDisabledURLUpdate 256

FormInfoStrings 41

FormMessageString Class 134

fPDFCreateOtherAsAttachments 256

fPreventTaskCompleteIfCheckout 290

fReAuthFillUserID 256, 302

fReenableUsersOnSync 222

fRemoveSavedInstForOldUsers 228

fReportShowExportTo 269

fReportViewsPadminOnly 268

fScriptsPadminOnly 268

fSendEmailOnWfAdmin 291

Developer's Reference Guide | 383



BP Logix Inc
Process Director Documentation

fSharedDelegationAllProcesses 229

fSharedDelegationNextTask 323

fShowPredictedDates 302

fShowProcessCancelReasonOnUser 302

fShowResultOnNotNeeded 291

fSkipNextPageCheck 257

fSkipWhereUsedCheck 257

fStartUsersAddedToGroup 291

fSyncExtraLog 222

fTestMode 230

fTurnOffSharedDelegation 294

fTurnOffUserProfileEmail 295

fTurnOffUserProfileTimeZone 294

fTurnOnDelegationGroups 323

fUnlockAcctOnPasswordReset 263

fUseAsyncUpload 257

fUseNewLoginSessionGUID 230

fWebServiceAllowCredentialsURL 230, 258

G

GetActivityByACTID 352

GetActivityByName 165, 352

GetAllGroups (Static Method) 136

GetAllUsers (Static Method) 186

GetAttribute 89, 337

GetAttributes 89

GetBusinessValueByID 74

GetBusinessValueByName 74

GetBytes 104

GetCaseByCASEID 77

GetCaseByCASEINSTID 77, 334

GetCaseData 334

GetCaseProperties 77, 334

GetCategory 139

GetCategoryByID 139

384 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

GetCategoryByName 140

GetCategoryID 140

GetChildren 90, 150, 194

GetCurrentProfileName 66

GetDatabaseInfo 330

GetDataSourceByDSID (Static Method) 102

GetDataSourceByName (Static Method) 103

GetDataSources 141

GetDisabledUsers 330

GetDiskInfo 331

GetDocumentByDID (Static Method) 104

GetDropDownByDDID (Static Method) 106

GetDropDownValues (Static Method) 107

GetErrorMessages 121

GetExcelRows 65

GetFileType 91

GetFolderByID 337

GetFolderByID (Static Method) 112

GetFolderByPathName 337

GetFolderByPathName (Static Method) 112

GetFormByFORMID 121

GetFormByFORMINSTID 343

GetFormByFORMINSTID (Static Method) 121

GetFormData 343

GetFormDataEx 343

GetFormFields 146

GetFormSchema 122, 344

GetFormSchemaEx 344

GetGroupByID 347

GetGroupByID (Static Method) 137

GetGroupByName 347

GetGroupByName (Static Method) 137

GetInfoMessages 122

GetJavaScript 122

GetLoggedInUsers 331

Developer's Reference Guide | 385



BP Logix Inc
Process Director Documentation

GetMaximumUsers 331

GetObjectByID 338

GetObjectByID (Static Method) 91

GetObjectByPathName 338

GetObjectByPathName (Static Method) 92

GetObjectsByType 331

GetObjectsFromParent 338

GetObjectsFromParentID 338

GetPartition (Static Method) 142

GetPartitionByID (Static Method) 142

GetPartitionByName (Static Method) 142

GetPartitionID (Static Method) 143

GetPartitions 338

GetPermissions 92

GetProcessByID 151

GetProcessByInstID 151

GetProcessTaskByTASKID (Static Method) 158

GetProcessTaskByTASKINSTID (Static Method) 157

GetProcessTaskUserByTASKUID 163

GetProcessTaskUserByTASKUINSTID 164

GetProjectActivityByACTID 168

GetProjectActivityByACTINSTID 169

GetProjectActivityByName 169

GetProjectByPRID 166

GetProjectByPRINSTID 166

GetPropertyDateTime 78

GetPropertyNumber 78

GetPropertyText 77

GetReportByRID 349

GetRootCategory 140

GetRootFolder 80, 143, 175, 339

GetRuleByID 173

GetRuleByName 173

GetRuleByRULEID 350

GetServerInfo 331

386 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

GetStream 104

GetSubProcesses 151

GetTaskByName 152

GetTaskByName (Static Method) 158

GetTaskByTLID (Static Method) 177

GetTasksForEmail 178

GetTasksForUser (Static Method) 178

GetTempDirectory 66

GetTimelineByTLID 352

GetTimelineByTLINSTID 352

GetTotalActiveUsers 332

GetTotalGroups 332

GetTotalUsers 332

GetUserByEmail (Static Method) 186

GetUserByExtID 358

GetUserByExtID (Static Method) 186

GetUserByID 358

GetUserByID (Static Method) 187-188

GetUserByUserID 358

GetUsers 347

GetUserTasks 361

GetUserTasksByEmail 361

GetUserTasksByUID 362

GetValueByCell 108

GetValueByRangeName 109

GetValuesByCell 109

GetValuesByRow 110

GetWorkflowByWFID 364

GetWorkflowByWFID (Static Method) 194

GetWorkflowByWFINSTID 364

GetWorkflowByWFINSTID (Static Method) 195

GetWorkflowStepByName 194, 364

GetWorkflowStepByName (Static Method) 197

GetWorkflowStepBySTID 365

GetWorkflowStepBySTID (Static Method) 198

Developer's Reference Guide | 387



BP Logix Inc
Process Director Documentation

GetWorkflowStepBySTINSTID (Static Method) 198

GetWorkflowStepUserBySUINSTID (Static Method) 200-201

GetWorkspaceByName 201

GetWorkspaceByPROFILEID 202

Google Sentiment 261

GoogleSentiment_client_email 261

GoogleSentiment_private_key 261

GoogleSentiment_project_id 261

Group Class 135

GroupPicker 41

H

HasUser 137

How Custom Tasks Work 60

HTML 42

HTMLEncode / HTMLDecode (Static Method) 67

HTTPPoke (Static Method) 67

HTTPRequest (Static Method) 67

HTTPRequestBytes (Static Method) 67

HTTPRest (Static Method) 68

I

IgnoreSection 42

ImportExcelDatabase (Static Method) 68

ImportGlobalKViewXML 362

ImportProfilesXML 362

ImportUsersFromExcel 188

ImportXML 339

ImportXML, ImportGlobalKViewXML, ImportProfilesXML 69

Include Files 26

InGroup 188

InlineDocumentTypes 303

Instantiate 152, 334, 344, 352, 365

Instantiate (Static Method) 123

INT | CURR | DOUBLE | DECIMAL | BPDATETIME (Static Method) 69

iPopupSimple 203

388 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

IsCatAssigned 93

J

JavaScript APIs 202

JumpToStep 195, 198

JumpToStepID 195, 199

K

Knowledge View Scripts 19

L

Language 207

LDAP_DisplayName_Field 245

LDAP_Email_Field 245

LDAP_GUID_Field 245

LDAP_PageSize 246

LDAP_URL 246

LDAP_UserID_Field 246

LDAPEx_ReferralChasing 245

LeaveCaseButtonText 303

ListBox 43

LoadBalancedRequest 362

Locales 231

Localization 207

LockUserAccount 189, 358

log0 | log1 | log2 | log3 | log4 | log5 (Static Method) 70

Login (Static Method) 71

LoginFailuresUntilLock 264

LoginMessage 303

M

MatchSAMLGroups 274

MaxUploadSize 248

MergePDFs 147

MetaCategory Class 139

metadata 36, 336, 340

Methods 63, 74, 76, 80-81, 84, 102-103, 106-108, 111, 114, 128, 135, 139, 141, 143, 149, 157, 162,

Developer's Reference Guide | 389



BP Logix Inc
Process Director Documentation

165, 168, 170-172, 174, 176-177, 181, 193, 197, 200-201

MoveObject 93, 339

N

nAppenateCompanyID 262

nArchiveLogDays 250

nAsyncSubProcessWaitSecs 269

nAuditLogDays 236-237

nDBCommandTimeout 258

nDBTransIsolationLevel 258

nDebugProcessTimeFactor 258

nFormOpenProps 303

nHomeTopHeight 304

nHomeTopWidth 304

nImportLogDays 250

nImportLogImportDays 251

nImportLogKVRunDays 251

nImportLogMLPublishDays 251

nImportLogSArunDays 251

nImportLogSyncDays 252

nKViewBuiltinMaxResults 247

nLimitSearchToChars 259

nMaxActivityStarts 231

nMaxActivityStartsInLastSecs 231

nMaxAdminAuditRows 236

nMaxAdminPermRows 247

nMaxAdminRows 247

nMaxADSyncLogEvents 252

nMaxBusinessValueRows 248

nMaxGroupDropdownRows 248

nMaxLogBackups 252

nMaxLogFileSize 252

nMaxPercentUsersToDisableOnSync 222

nMaxProfileButtons 248-249, 288, 298

nMaxUserDropdownRows 248

390 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

nMaxUsersToDisableOnSync 222

nMinLDAPUsersWithGroupsBeforeDisable 222

NormalizeGroupList 138

NormalizeUserList 189

NotifyPwdChangeDays 264

nPDFPageWidth 304

nTaskCompleteDialogHeight 305

nTaskCompleteDialogWidth 304

nTaskCompletePromptDialogHeight 305

nTaskCompletePromptDialogWidth 305

nTimelineLoopCountStarts 232

NTLM_NoLoginButton 305

nUserInactivityTimeoutSecs 323

nWSTimeout 259

O

OVERVIEW 8

P

Parameters 74-75

Partition Class 141

PasswordResetRedirectURL 264

PDF Class 143

plugin 10

PostEvent 152, 196, 353, 365

PostEvent (static method) 166

Print 44

Process Class 148

Process Script 16

Process Script Handlers 17

Process Timeline 165

ProcessTask Class 156

ProcessTaskUser Class 161

Project Class 165

ProjectActivity Class 167

ProjectActivityUser Class 170

Developer's Reference Guide | 391



BP Logix Inc
Process Director Documentation

ProjectReminderTimes 288

Properties 73, 75-76, 80-82, 102-103, 106-107, 113, 127, 135, 139, 141, 148, 156, 161, 167, 170, 172,
174-176, 179, 197, 200-201

Property 75

PwdMinLength 264

PwdMinLetters 264

PwdMinLower 265

PwdMinNumbers 265

PwdMinSymbols 265

PwdMinUpper 265

PwdNoReuseDays 266

PwdNoReuseNumTimes 266

PwdStrength 266

PwdStrengthMessage 266

R

Radio 44

RecalcCaseInstanceName 78

RecalcFormInstanceName 123, 344

RecalcInstanceName 153

RefreshParentWorkspaces 243

RemoveCategory 94

RemoveFromGroup 190

RemoveFromGroupWorkspace 347

RemoveObjectFromParent 94

RemovePermissions 95

RemoveRow 45, 132

RemoveSharedDelegate 190

RemoveSIDFromJS 244

RemoveUser 138

RemoveUserFromWorkspace 359

RemoveUsersFromActivity 353

RemoveUsersFromStep 365

RemoveUsersFromTask 159

ReplaceUser 359

ReplaceWithUser 190

392 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

ReplicatePermsToChildren 95

ReplicatePermsToChildrenAndForms 96

Report Class 171

ReportRemoteURL 271

ResendEmailForUserTask 159, 164

ResponsiveType 306

REST 367, 369, 371

REST Data 367, 369, 371

REST Services 367, 369, 371

Restart 169

ReStart 153, 196, 353, 365

RichText 45

Rollback 167

RoutingSlip 45

RowCount 123

Rule Class 80, 172

Run 154, 353, 366

RunKView 71, 339

RunTimeline 353

RunTimelineWithForm 354

RunWorkflow 366

RunWorkflowWithForm 366

S

SAML_Artifact_URL 275

SAML_Attrib_CustomDate 278

SAML_Attrib_CustomNumber 278

SAML_Attrib_CustomString 278

SAML_Attrib_CustomString2 278

SAML_Attrib_Email 278

SAML_Attrib_Groups 278

SAML_Attrib_GUID 277

SAML_Attrib_UserID 277

SAML_Attrib_UserName 277

SAML_Enable 274-275

Developer's Reference Guide | 393



BP Logix Inc
Process Director Documentation

SAML_IP_AssertionCertificate 277

SAML_IP_Certificate 277

SAML_Issuer 279

SAML_My_Certificate 276

SAML_My_PFX 276

SAML_My_PFXPassword 276

SAML_NextURLInRelayState 276

SAML_NoLoginButton 279

SAML_ProviderName 279

SAML_URL 275

SAML_URL_Destination 275

sAppenateIntegrationKey 262

Save 48

SaveAndSubmit 124

SaveForm 124

sCkEditorCustomConfig 306

Script Types 8

sDisableNavigationScroll 300, 307

SearchForms 344

Section 48

SelectDropDown 132

SendEmail (Static Method) 72

SendMessageToAll 332

Sentiment 261

SequenceNumber 362

SetActivityDueDate 354

SetAttribute 96, 340

SetAttributes 97, 340

SetCaseData 334

SetCaseProperty 335

SetContextUID 333, 335, 340, 345, 348-350, 354, 359, 362, 367

SetCurrentFormInstance 154

SetCurrentUserContext 191

SetDocReviewable 105

SetDropDownValues 106, 108

394 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

SetDueDate 160

SetDuration 160

SetError 160

SetExternalAttribute 97, 340

SetExternalAttributes 98, 340

SetFormData 345

SetFormDataEx 345

SetFormDataField 345

SetFormFields 147

SetGroupName 98, 341

SetInstanceOwnerDelegate 169

SetMessage 161

SetMetaData 99, 341

SetParameter 75

SetPermissions 99

SetPermissionsEx 100

SetPriority 155

SetPropertyDateTime 79

SetPropertyNumber 79

SetPropertyText 79

SetRuleGroup 174

SetStepDueDate 367

SetValue 133

ShowAttach 49

ShowDocHistoryWhenDisabled 308

SignatureComments 52

sLoadingImage 307

sLocalIPs 234

sLogoLink 307

sLogoURL 307

sMobileAdvancedTypes 259

sMobileWebServerURL 229, 263

Sort 53, 133

sPDFInterfaceURL 232

sPickupDirectoryLocation 232

Developer's Reference Guide | 395



BP Logix Inc
Process Director Documentation

SplitterWidth 308

sReportInterfaceURL 271

sStyleDisabled 308

sStyleEnabled 308

sStyleError 309

sStyleRequired 309

Start 155, 355, 367

StartTask 155

sTimeZoneID 232

Sum 54

sUploadAddCookie 259

sUseCSS 309

SwapRows 134

SynchronizeFields 124

SystemVariable Class 174

SystemVariableContext Class 175

SysVar 54

T

Tab 55

TabContent 55

TabStrip 55

TabStripContent 56

Task Class 176

TaskAlreadyCompleteAlert 292

TaskAlreadyCompleteMessage 292

TaskAlreadyCompletePage 292

TaskAssignedReminderTimes 293

TaskDueReminderTimes 293

TaskUsersInTask (Static Method) 164

Termination Reason 63

TestModeIPs 234

TestUserEmailAddress 234

TestUserEmails 235, 288

Timeline Script 16

396 | Developer's Reference Guide



BP Logix Inc
Process Director Documentation

TimePicker 56

TimerSecondsCheckProjAdvance 223

TimerSecondsCheckProjReminders 223

TimerSecondsCheckWfAdvance 223

TimerSecondsCheckWfReminders 223

U

UnDelegateUser 191, 359-360

UnlockForm 125

UnlockUserAccount 191

Update 81

UpdateDocData 105

UpdateLastActivityTime 191

UpdateObject 101

UpdateUser 192

UpdateUserFields 360

UpdateUserLastActivityTime 360

UpdateUserRecord 360

User Class 179

UserExists 192

UserInfoShowEditProfile 295

UserInfoShowSignOut 294

UserInfoSlideOut 295

UserPicker 56

UseWorkspaceHome 309

Using a .DLL file with Your Scripts 26

Using a Specific Process Script File 16-17

Using REST 325

V

ValidationPhonePattern 260

ValidationURLPattern 260

ValidationZipCodePattern 260

Vars 217

Version 363

Visual Studio 10

Developer's Reference Guide | 397



BP Logix Inc
Process Director Documentation

W

Web Service Authentication Settings 326

Web Service Custom Tasks 62

Web Services 325, 328, 367, 369, 371

What Custom Tasks Can Be Used For 59

Workflow Class 193

Workflow Custom Tasks 60

Workflow Script 16

WorkflowStep Class 197

WorkflowStepUser Class 199

Workspace Class 201

WriteDocumentToDisk 106

Writing a Knowledge View Script Function 19

Writing a Process Script Function 16

Writing the Script Handler 18

wsAdmin 329

wsCase 333

wsContent 335

wsForm 341

wsGroup 345

wsReport 348

wsRule 349

wsTimeline 351

wsUser 355

wsUtil 360

wsWorkflow 363

398 | Developer's Reference Guide


	Contents
	Contents
	Documentation Formatting Note
	Text and Code Formatting Conventions
	Icons
	Other Conventions

	Development Overview
	Script Types
	.NET Forms
	Customization through Scripting

	Custom Scripting/Development
	Installing the BP Logix Visual Studio Plugin
	Form Scripts
	Form Script Events #

	Process Scripts
	Process Script Handlers

	Knowledge View Scripts
	Custom ASPX Pages
	Creating ASP.NET Forms
	Adding a New Form Definition
	Editing an ASP.NET Form #
	Developing a Form in the .NET environment
	Form Controls

	Custom Workspace Portlets
	Custom Tasks
	What Custom Tasks Can Be Used For
	Form Custom Tasks
	Process Custom Tasks
	How Custom Tasks Work
	Creating a Custom Task
	Web Service Custom Tasks

	Classes
	Common Termination Reasons
	bp Class
	Business Value Class
	Case Class
	ConditionSet Class
	Condition Struct
	ContentObject Class
	DataSource Class
	DocumentObject Class
	Dropdown Object Class
	DropdownValue Object Class
	Excel Class
	Folder Class
	Form Class
	FormControl Class
	FormMessageString Class
	Group Class
	MetaCategory Class
	Partition Class
	PDF Class
	Process Class
	ProcessTask Class
	ProcessTaskUser Class
	Project (Process Timeline) Class
	ProjectActivity Class
	ProjectActivityUser Class
	Report Class
	Rule Class
	SystemVariable Class
	SystemVariableContext Class
	Task Class
	User Class
	Workflow Class
	WorkflowStep Class
	WorkflowStepUser Class
	Workspace Class

	JavaScript APIs
	Form Data #
	iPopupSimple Command #

	Language/Culture Localization
	Customizing the Process Director UI
	Form Customization/Localization


	Customization File
	Form Control Styles
	Creating Your Own Custom Variables
	Session Variables
	Shared Delegation

	Custom Variables
	Active Directory Custom Variables
	Administration Custom Variables
	Auditing Custom Variables
	Default Settings Custom Variables
	LDAP Custom Variables
	List Maximum Custom Variables
	Logs Custom Variables
	Miscellaneous Variables
	ML and AI Custom Variables
	Mobile Application Custom Variables
	Password Enforcement Custom Variables
	Process Administration Custom Variables
	Reporting Tool Custom Variables
	REST Custom Variables
	SAML Custom Variables
	Social Media Custom Variables
	System Custom Variables
	Task Custom Variables
	User Info SlideOut Custom Variables
	User Interface Custom Variables
	User Custom Variables


	Using Web Services
	REST Services #
	Other REST Services

	Web Service Authentication Settings #
	Extending BP Logix Web Services #
	Calling Other Web Services #
	Available Web Services
	wsAdmin
	wsCase
	wsContent
	wsForm
	wsGroup
	wsReport
	wsRule
	wsTimeline
	wsUser
	wsUtil
	wsWorkflow

	REST Services
	The REST Request #
	The REST Response #
	More Information about Rest Services
	JSON and XML for REST
	JSONPath and XPath


	Index

